找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Learning Theory; 6th International Wo Klaus P. Jantke,Takeshi Shinohara,Thomas Zeugmann Conference proceedings 1995 Springer-Ve

[復(fù)制鏈接]
樓主: 街道
41#
發(fā)表于 2025-3-28 15:53:25 | 只看該作者
42#
發(fā)表于 2025-3-28 19:31:40 | 只看該作者
43#
發(fā)表于 2025-3-29 02:11:09 | 只看該作者
44#
發(fā)表于 2025-3-29 05:30:16 | 只看該作者
Gründung und Errichtung der Kreditinstituteormulas is learnable with membership, equivalence and subset queries. Moreover, it is shown that under some condition the class of orthogonal .-Horn formulas is learnable with membership and equivalence queries.
45#
發(fā)表于 2025-3-29 10:34:49 | 只看該作者
46#
發(fā)表于 2025-3-29 14:35:27 | 只看該作者
?Bankbetrieb“ und ?Bankbetriebslehre“above, we obtain probabilistic hierarchies highly structured without a “gap” between the probabilistic and deterministic learning classes. In the case of exact probabilistic learning, we are able to show the probabilistic hierarchy to be dense for every mentioned monotonicity condition. Considering
47#
發(fā)表于 2025-3-29 18:50:55 | 只看該作者
Learning unions of tree patterns using queries,time PAC-learnability and the polynomial time predictability of .. when membership queries are available. We also show a lower bound . of the number of queries necessary to learn .. using both types of queries. Further, we show that neither types of queries can be eliminated to achieve efficient lea
48#
發(fā)表于 2025-3-29 23:31:36 | 只看該作者
49#
發(fā)表于 2025-3-30 00:29:20 | 只看該作者
Machine induction without revolutionary paradigm shifts,nference, it is shown that there are classes learnable . the non-revolutionary constraint (respectively, with severe parsimony), up to (i}+1) mind changes, and no anomalies, which classes cannot be learned with no size constraint, an unbounded, finite number of anomalies in the final program, but wi
50#
發(fā)表于 2025-3-30 06:32:32 | 只看該作者
Probabilistic language learning under monotonicity constraints,above, we obtain probabilistic hierarchies highly structured without a “gap” between the probabilistic and deterministic learning classes. In the case of exact probabilistic learning, we are able to show the probabilistic hierarchy to be dense for every mentioned monotonicity condition. Considering
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 23:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遂宁市| 桑植县| 恩施市| 晴隆县| 杂多县| 香港| 调兵山市| 会昌县| 同江市| 峨边| 公安县| 九江县| 务川| 鞍山市| 旬邑县| 长汀县| 呼和浩特市| 娄烦县| 海盐县| 乌兰县| 琼结县| 上饶县| 富顺县| 木兰县| 洞口县| 富裕县| 阿鲁科尔沁旗| 北流市| 香河县| 蕲春县| 泽库县| 泰州市| 海门市| 梧州市| 铜川市| 灵石县| 平泉县| 通化市| 铜山县| 益阳市| 西峡县|