找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Algebraic Combinatorics and Gr?bner Bases; Mikhail Klin,Gareth A. Jones,Ilia Ponomarenko Book 2009 Springer-Verlag Berlin Heid

[復(fù)制鏈接]
樓主: Abridge
31#
發(fā)表于 2025-3-27 00:22:40 | 只看該作者
https://doi.org/10.1007/978-3-658-06532-4In the study of finite geometries one often requires knowledge of the ranks of related (0,1)-incidence matrices. We describe some of the combinatorial questions in finite geometry for which formulas for these ranks are useful; and we describe methods from algebraic geometry that are useful in obtaining such rank formulas.
32#
發(fā)表于 2025-3-27 03:24:23 | 只看該作者
https://doi.org/10.1007/978-3-319-25757-0In this chapter we introduce the notion of total graph coherent configuration, and use computer tools to investigate it for two classes of strongly regular graphs – the triangular graphs .(.) and the lattice square graphs ..(.). For .(.), we show that its total graph coherent configuration has exceptional mergings only in the cases .=5 and .=7.
33#
發(fā)表于 2025-3-27 05:17:55 | 只看該作者
Using Gr?bner Bases to Investigate Flag Algebras and Association Scheme FusionThis paper is meant primarily as a . on how to phrase problems in association schemes in the language of Gr?bner bases and use the computational results provided by those bases, though it does contain fusion scheme computations not previously found in the literature.
34#
發(fā)表于 2025-3-27 12:35:26 | 只看該作者
A Construction of Designs from ,(2,,) and?,(2,,), ,=1 mod 6, on ,+2 PointsLet .=.(2,.) or .(2,.). We consider the action of . on the projective line together with one additional point, which is fixed by .. Assume .≡1 mod 6 and set.We construct .designs admitting .(2,.) as their automorphisms, if .≡3 mod 4. We also construct .designs admitting .(2,.) as their automorphisms. These designs may not be simple.
35#
發(fā)表于 2025-3-27 14:50:05 | 只看該作者
36#
發(fā)表于 2025-3-27 19:15:48 | 只看該作者
37#
發(fā)表于 2025-3-28 00:15:17 | 只看該作者
Algorithmic Algebraic Combinatorics and Gr?bner Bases
38#
發(fā)表于 2025-3-28 05:10:28 | 只看該作者
39#
發(fā)表于 2025-3-28 07:57:40 | 只看該作者
40#
發(fā)表于 2025-3-28 13:29:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 05:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙胜| 衡阳市| 深泽县| 永城市| 汉源县| 安乡县| 富顺县| 兰西县| 安岳县| 丰镇市| 黔西| 汕头市| 时尚| 福鼎市| 灌阳县| 河津市| 开化县| 大英县| 卓资县| 瑞安市| 长宁县| 香港 | 综艺| 德昌县| 翼城县| 长泰县| 永嘉县| 宁德市| 唐河县| 随州市| 丹棱县| 永平县| 横山县| 乐东| 景泰县| 保定市| 乾安县| 颍上县| 明水县| 仙居县| 奉化市|