找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmen und Probleml?sungen mit C++; Von der Diskreten Ma Doina Logof?tu Textbook 2010Latest edition Vieweg+Teubner Verlag | Springer F

[復(fù)制鏈接]
樓主: JOLT
21#
發(fā)表于 2025-3-25 05:11:01 | 只看該作者
Kombinatorik,Das mathematische Teilgebiet der Kombinatorik befasst sich mit der Theorie der endlichen Mengen. Die Hauptaufgabe der Kombinatorik besteht darin, die Elemente einer Menge geschickt zu z?hlen. Es geht aber auch um das Anordnen und Ausw?hlen von Elementen einer Menge.
22#
發(fā)表于 2025-3-25 09:26:12 | 只看該作者
23#
發(fā)表于 2025-3-25 15:28:20 | 只看該作者
24#
發(fā)表于 2025-3-25 16:47:01 | 只看該作者
Rekursion,Man muss oft in der Mathematik Aussagen nicht nur für endliche Mengen beweisen, sondern für unendliche. Die natürlichen Zahlen ? bilden eine unendliche Menge. Um eine Aussage über ? zu beweisen, kann man sie nicht nacheinander für alle natürlichen Zahlen beweisen, weil der Prozess kein Ende h?tte.
25#
發(fā)表于 2025-3-25 23:50:01 | 只看該作者
Backtracking,Das .-Verfahren ist sehr bekannt, und man kann damit viele Probleme l?sen. Eines dieser Probleme, das in fast jeder Lektüre über . erscheint, ist das .. Jemand hat sogar einmal behauptet: .. Wir werden deswegen mit diesem berühmten, einfach zu beschreibenden, aber nicht trivial zu l?senden Problem anfangen.
26#
發(fā)表于 2025-3-26 01:51:12 | 只看該作者
Dynamische Programierung, Die Dynamische Programmierung ist ein algorithmisches Verfahren, um Optimierungsprobleme zu l?sen. Der Begriff wurde im Jahr 1940 vom amerikanischen Mathematiker Richard Bellman (1920–1984) vorgestellt. Er wurde in der Kontrolltheorie verwendet und in diesem Umfeld spricht man oft von Bellmanns Prinzip der dynamischen Programmierung.
27#
發(fā)表于 2025-3-26 06:59:57 | 只看該作者
28#
發(fā)表于 2025-3-26 09:50:50 | 只看該作者
29#
發(fā)表于 2025-3-26 14:13:45 | 只看該作者
https://doi.org/10.1007/978-3-8348-9382-6Algorithmen; C++; Geometrie; Huffman; Inform; Kombinatorik; Methode; algorithmische Geometrie; dynamische Pr
30#
發(fā)表于 2025-3-26 18:33:24 | 只看該作者
978-3-8348-0763-2Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH, Wiesbaden 2010
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁乡县| 海原县| 土默特右旗| 崇信县| 柘荣县| 原阳县| 元朗区| 四子王旗| 乌拉特后旗| 西峡县| 霍林郭勒市| 普陀区| 昆山市| 台南县| 上高县| 托里县| 康马县| 亳州市| 文安县| 平顶山市| 长治市| 萝北县| 兴宁市| 凌云县| 宜兰市| 辉县市| 金溪县| 舟山市| 洛宁县| 耒阳市| 纳雍县| 九寨沟县| 潜山县| 谷城县| 彭泽县| 禹城市| 项城市| 兴国县| 逊克县| 灌云县| 龙游县|