找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebras, Quivers and Representations; The Abel Symposium 2 Aslak Bakke Buan,Idun Reiten,?yvind Solberg Book 2013 Springer-Verlag Berlin He

[復制鏈接]
樓主: Flange
31#
發(fā)表于 2025-3-26 21:28:26 | 只看該作者
Democratic Culture and Moral Characteromorphisms between indecomposable finite dimensional modules are finite (do not belong to the infinite Jacobson radical of the module category). Moreover, geometric and homological properties of these module categories are exhibited.
32#
發(fā)表于 2025-3-27 05:08:00 | 只看該作者
https://doi.org/10.1007/978-3-642-39485-0cluster algebras; homological algebra; quivers; representation theory; triangulated categories
33#
發(fā)表于 2025-3-27 08:49:52 | 只看該作者
978-3-642-43018-3Springer-Verlag Berlin Heidelberg 2013
34#
發(fā)表于 2025-3-27 13:30:59 | 只看該作者
2193-2808 n, it includes contributions on further developments in representation theory of quivers and algebras..Algebras, Quivers and Representations. is targeted at researchers and graduate students in algebra, representation theory and triangulate categories..?978-3-642-43018-3978-3-642-39485-0Series ISSN 2193-2808 Series E-ISSN 2197-8549
35#
發(fā)表于 2025-3-27 14:36:28 | 只看該作者
36#
發(fā)表于 2025-3-27 20:30:41 | 只看該作者
37#
發(fā)表于 2025-3-27 22:44:04 | 只看該作者
Combinatorics of KP Solitons from the Real Grassmannian,er highlights include: a surprising connection with total positivity and cluster algebras; results on the .; and the characterization of regular soliton solutions—that is, a soliton solution ..(.,.,.) is regular for all times . if and only if . comes from the . of the Grassmannian.
38#
發(fā)表于 2025-3-28 03:55:46 | 只看該作者
39#
發(fā)表于 2025-3-28 06:42:56 | 只看該作者
Acyclic Cluster Algebras Revisited, simple proof of the known result that the .-vectors of an acyclic cluster algebra are sign-coherent, from which Nakanishi and Zelevinsky have showed that it is possible to deduce in an elementary way several important facts about cluster algebras.
40#
發(fā)表于 2025-3-28 11:34:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 13:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
三都| 庐江县| 茌平县| 连江县| 靖边县| 拉孜县| 衡山县| 乌苏市| 光山县| 慈溪市| 渭源县| 万山特区| 陆川县| 西青区| 巨鹿县| 封开县| 博乐市| 义乌市| 台东县| 柘荣县| 栖霞市| 东乡族自治县| 永昌县| 望江县| 水城县| 宜君县| 巴林左旗| 鲁甸县| 河北省| 苗栗市| 和林格尔县| 工布江达县| 招远市| 河源市| 揭阳市| 黑水县| 南木林县| 五原县| 顺昌县| 南昌市| 庆安县|