找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic, Number Theoretic, and Topological Aspects of Ring Theory; Jean-Luc Chabert,Marco Fontana,Keith Johnson Book 2023 Springer Natur

[復(fù)制鏈接]
樓主: Sparkle
21#
發(fā)表于 2025-3-25 04:21:33 | 只看該作者
https://doi.org/10.1007/978-3-8349-8297-1Let .???. be a (unitary) extension of commutative rings. In this paper, we study several generalizations of the integral closure of . in . by replacing monic polynomials in .[.] with other subsets of .[.].
22#
發(fā)表于 2025-3-25 09:52:26 | 只看該作者
23#
發(fā)表于 2025-3-25 14:36:35 | 只看該作者
24#
發(fā)表于 2025-3-25 19:12:12 | 只看該作者
25#
發(fā)表于 2025-3-25 22:55:15 | 只看該作者
26#
發(fā)表于 2025-3-26 03:13:03 | 只看該作者
27#
發(fā)表于 2025-3-26 07:52:43 | 只看該作者
Assessing Demobilization: Conceptual IssuesThis paper surveys recent works which investigate reductions and core of ideals in various settings of integral domains, including Prüfer domains, Noetherian domains, and pullback constructions. Results are presented and discussed without proofs, and examples are provided with full details from the original papers.
28#
發(fā)表于 2025-3-26 11:01:11 | 只看該作者
https://doi.org/10.1057/9781403920072This work will present a method for constructing homogeneous integer-valued polynomials .∕. with . a product products of linear factors, with . a prime and . large relative to the degree of .. This is accomplished by connecting this problem to the older geometric problem of finding coverings of generalized projective planes by families of lines.
29#
發(fā)表于 2025-3-26 16:04:10 | 只看該作者
Polynomial Root Extensions,Let .???. be a (unitary) extension of commutative rings. In this paper, we study several generalizations of the integral closure of . in . by replacing monic polynomials in .[.] with other subsets of .[.].
30#
發(fā)表于 2025-3-26 18:34:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 06:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
林芝县| 蓝山县| 莱州市| 榆林市| 博罗县| 无锡市| 荣成市| 浦城县| 浦县| 谷城县| 新泰市| 双辽市| 镇江市| 灌南县| 深州市| 西乡县| 怀仁县| 墨竹工卡县| 双牌县| 磴口县| 南郑县| 育儿| 师宗县| 葫芦岛市| 寻甸| 璧山县| 鄂伦春自治旗| 大渡口区| 桦甸市| 晋江市| 论坛| 刚察县| 乐清市| 郎溪县| 武功县| 怀柔区| 关岭| 婺源县| 永胜县| 康马县| 隆德县|