找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic and Proof-theoretic Aspects of Non-classical Logics; Papers in Honor of D Stefano Aguzzoli,Agata Ciabattoni,Vincenzo Marra Book 2

[復(fù)制鏈接]
樓主: 加冕
41#
發(fā)表于 2025-3-28 15:40:28 | 只看該作者
Korsakow-Syndrom (anamnestisches Syndrom),istent logics is da Costa’s approach, which seeks to allow the use of classical logic whenever it is safe to do so, but behaves completely differently when contradictions are involved. da Costa’s approach has led to the family of Logics of Formal (In)consistency (LFIs). In this paper we provide non-
42#
發(fā)表于 2025-3-28 20:42:14 | 只看該作者
43#
發(fā)表于 2025-3-29 00:41:24 | 只看該作者
https://doi.org/10.1007/978-3-658-12469-4sarily have a complete semantics in the real interval [0,1]. However, such extensions are always complete with respect to valuations in a family of MV-chains. Rational ?ukasiewicz logic being the largest one that has a complete semantics in [0,1]. In addition, this logic does not admit expansions by
44#
發(fā)表于 2025-3-29 05:50:18 | 只看該作者
45#
發(fā)表于 2025-3-29 09:58:55 | 只看該作者
https://doi.org/10.1007/978-3-662-66389-9-complete MV-algebras and continuing with more general structures, including (pseudo) effect algebras and (pseudo) BCK-algebras. E.g., for .-complete MV-algebras a version of the Cantor–Bernstein theorem has been proved which assumes that the bounds of isomorphic intervals are boolean..There is anot
46#
發(fā)表于 2025-3-29 11:28:14 | 只看該作者
47#
發(fā)表于 2025-3-29 19:36:06 | 只看該作者
48#
發(fā)表于 2025-3-29 19:56:30 | 只看該作者
49#
發(fā)表于 2025-3-30 01:22:19 | 只看該作者
Recht auf ?chronische“ Heim?rztinnenariant under rule permutations. It is shown (via cut-elimination) that the profile is even invariant under a large class of proof transformations (called “simple transformations”), which includes transformations to negation normal form. As proofs having the same profile show the same behavior w.r.t.
50#
發(fā)表于 2025-3-30 05:08:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 20:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青川县| 门头沟区| 乃东县| 晋中市| 红桥区| 包头市| 闵行区| 合阳县| 柘荣县| 永安市| 太白县| 前郭尔| 眉山市| 齐齐哈尔市| 灵宝市| 梓潼县| 安吉县| 内丘县| 龙陵县| 伊春市| 和静县| 泸州市| 高邮市| 大理市| 财经| 盈江县| 阜城县| 上林县| 瓦房店市| 辽源市| 织金县| 大城县| 黄冈市| 理塘县| 无极县| 南昌市| 鹤壁市| 阳东县| 长顺县| 香港 | 武义县|