找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic and Geometric Methods in Mathematical Physics; Proceedings of the K Anne Boutet Monvel,Vladimir Marchenko Conference proceedings

[復(fù)制鏈接]
樓主: 調(diào)戲
41#
發(fā)表于 2025-3-28 15:44:17 | 只看該作者
42#
發(fā)表于 2025-3-28 22:33:56 | 只看該作者
43#
發(fā)表于 2025-3-29 02:26:45 | 只看該作者
44#
發(fā)表于 2025-3-29 06:44:38 | 只看該作者
45#
發(fā)表于 2025-3-29 10:04:53 | 只看該作者
46#
發(fā)表于 2025-3-29 14:11:41 | 只看該作者
47#
發(fā)表于 2025-3-29 16:44:17 | 只看該作者
On Approximation of General Hamiltonians by Hamiltonians of the Theories of Superconductivity and Susystems if we replace the Kronecker symbol, which expresses the law of conservation of momentum, by several Kronecker symbols, preserving only the terms that contain at least two operators with momenta zero in the interaction Hamiltonian. This list of model systems can be continued.
48#
發(fā)表于 2025-3-29 23:24:19 | 只看該作者
49#
發(fā)表于 2025-3-30 01:32:09 | 只看該作者
Index Theorems and Microsupportuch as the index theorem for Toeplitz operators or the relative index theorem for .-modules proved by B. Malgrange and the author. We make a special emphasis on the microlocal contribution produced by the sheaf in which the solutions of the differential equations are computed, as described by P.Scha
50#
發(fā)表于 2025-3-30 08:05:10 | 只看該作者
Oscillatory Integrals Controlling the Drift of Spectral Projections for Pseudo-Differential Operator that rather explicit formulas for the drift can be found, in such a way that oscillatory integrals involving the symbols will control the variation of the spectral projections. Let’s start now to describe the main features of our approach through a model situation.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 13:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新田县| 德江县| 和静县| 靖西县| 金门县| 安乡县| 玉环县| 饶河县| 上饶县| 乾安县| 芦溪县| 淅川县| 阜平县| 岗巴县| 阿图什市| 青海省| 望城县| 左云县| 新宾| 都江堰市| 常山县| 鹤庆县| 仲巴县| 岱山县| 鲜城| 民乐县| 会昌县| 海原县| 河源市| 婺源县| 即墨市| 双峰县| 汪清县| 星子县| 嘉荫县| 平江县| 建宁县| 定西市| 阳谷县| 墨江| 连云港市|