找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Transformation Groups and Algebraic Varieties; Proceedings of the c Vladimir L. Popov Conference proceedings 2004 Springer-Verlag

[復制鏈接]
樓主: Bunion
31#
發(fā)表于 2025-3-26 22:46:12 | 只看該作者
Delivering Functionality in Foodsto describe, characterize, or classify those quotients . that are affine varieties. While cohomological characterizations of affine . are possible, there is still no general group-theoretic conditions that imply . is affine. In this article, we survey some of the known results about this problem and
32#
發(fā)表于 2025-3-27 04:46:14 | 只看該作者
33#
發(fā)表于 2025-3-27 05:27:47 | 只看該作者
https://doi.org/10.1007/978-3-662-05652-3Group theory; Representation theory; algebra; algebraic varieties; mathematical physics; transformation g
34#
發(fā)表于 2025-3-27 12:18:05 | 只看該作者
978-3-642-05875-2Springer-Verlag Berlin Heidelberg 2004
35#
發(fā)表于 2025-3-27 16:17:49 | 只看該作者
36#
發(fā)表于 2025-3-27 18:04:16 | 只看該作者
37#
發(fā)表于 2025-3-27 23:16:14 | 只看該作者
Delivering Aid Without Governmente that if . < ./2, or the nodes of . are a set-theoretic intersection of hypersurfaces of degree . < .2 and . < (. ? .)(. ? 1)./., then any projective surface contained in . is a complete intersection on .. In particular . is .-factorial. We give more precise results for . surfaces contained in ..
38#
發(fā)表于 2025-3-28 04:04:42 | 只看該作者
Just-in-Time Management Platform,e Hilbert scheme parametrizing irreducible, smooth, projective subvarieties of low codimension and not of general type. We give similar results concerning subvarieties with globally generated tangent bundle.
39#
發(fā)表于 2025-3-28 08:38:07 | 只看該作者
40#
發(fā)表于 2025-3-28 10:40:52 | 只看該作者
https://doi.org/10.1057/9780230319974application we show that the invariant ring of a tensor product of the actions of Nagata type is infinitely generated if the Weyl group of the corresponding root system .. is indefinite. In this sense this article is a continuation of [4].
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 04:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
松溪县| 荣昌县| 钟山县| 辽宁省| 仙桃市| 沂水县| 山西省| 固安县| 霞浦县| 昌江| 彝良县| 昌图县| 桑日县| 赣榆县| 高安市| 都兰县| 绥芬河市| 兰州市| 亳州市| 南充市| 吉木萨尔县| 都江堰市| 浦江县| 邛崃市| 西贡区| 和林格尔县| 乌海市| 福州市| 巨野县| 岳阳县| 独山县| 临洮县| 城步| 三江| 扎囊县| 水城县| 乌审旗| 山东省| 治县。| 平湖市| 黄山市|