找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Theory of Quadratic Numbers; Mak Trifkovi? Textbook 2013 Springer Science+Business Media New York 2013 ideal class group.number

[復(fù)制鏈接]
樓主: Thoracic
11#
發(fā)表于 2025-3-23 12:57:09 | 只看該作者
https://doi.org/10.1007/978-3-642-49270-9When we write . = 3. 141592., we really mean that . be approximated (the “…” part) by the rational number ..
12#
發(fā)表于 2025-3-23 17:38:19 | 只看該作者
https://doi.org/10.1007/978-1-4612-0885-3In this final chapter we go back to the late-eighteenth-century roots of algebraic number theory. Its fathers, Lagrange, Legendre, and Gauss, had none of the algebraic machinery we have used.
13#
發(fā)表于 2025-3-23 19:01:16 | 只看該作者
14#
發(fā)表于 2025-3-24 01:26:52 | 只看該作者
15#
發(fā)表于 2025-3-24 02:35:41 | 只看該作者
16#
發(fā)表于 2025-3-24 09:01:08 | 只看該作者
The Ideal Class Group and the Geometry of Numbers,It turns out that the group of fractional ideals . is not an interesting invariant of the quadratic field .: for different fields ., ., Exer. 5.1.7 shows that .. To get an object which does reflect the arithmetic of ., we consider a quotient of ..
17#
發(fā)表于 2025-3-24 11:29:17 | 只看該作者
Continued Fractions,When we write . = 3. 141592., we really mean that . be approximated (the “…” part) by the rational number ..
18#
發(fā)表于 2025-3-24 17:44:48 | 只看該作者
19#
發(fā)表于 2025-3-24 22:48:19 | 只看該作者
Algebraic Theory of Quadratic Numbers978-1-4614-7717-4Series ISSN 0172-5939 Series E-ISSN 2191-6675
20#
發(fā)表于 2025-3-25 00:08:32 | 只看該作者
Textbook 2013experience with elements and ideals in quadratic number fields.? The reader is also asked to fill in the details of proofs and develop extra topics, like the theory of orders.? Prerequisites include elementary number theory and a basic familiarity with ring theory..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 01:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
讷河市| 南投县| 容城县| 安福县| 陇南市| 东莞市| 读书| 浙江省| 乌拉特前旗| 高青县| 龙岩市| 获嘉县| 哈尔滨市| 赤水市| 永和县| 鲁甸县| 嘉荫县| 耿马| 英德市| 清原| 太白县| 沂南县| 游戏| 永吉县| 潜江市| 吴桥县| 三亚市| 怀仁县| 乐安县| 工布江达县| 林芝县| 呼和浩特市| 盐池县| 福鼎市| 夹江县| 观塘区| 金塔县| 杭锦旗| 蕉岭县| 华宁县| 吉木萨尔县|