找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Number Theory; Serge Lang Textbook 1994Latest edition Springer Science+Business Media New York 1994 algebraic number theory.anal

[復(fù)制鏈接]
樓主: 女孩
21#
發(fā)表于 2025-3-25 05:44:20 | 只看該作者
22#
發(fā)表于 2025-3-25 08:33:18 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/a/image/152688.jpg
23#
發(fā)表于 2025-3-25 13:24:45 | 只看該作者
24#
發(fā)表于 2025-3-25 19:43:14 | 只看該作者
Density of Primes and Tauberian Theoremlized arithmetic progressions determined by Hecke characters. In addition to giving a density for primes in given ideal classes, it also gives densities for primes distributed suitably in Euclidean .-space.
25#
發(fā)表于 2025-3-25 22:53:10 | 只看該作者
Brucella: Potential Biothreat Agent,This chapter describes the basic aspects of the ring of algebraic integers in a number field (always assumed to be of finite degree over the rational numbers .). This includes the general prime ideal structure.
26#
發(fā)表于 2025-3-26 00:13:23 | 只看該作者
The Economics of Disarmament and ConversionThis chapter introduces the completions of number fields under the p-adic topologies, and also the completions obtained by embedding the number field into the real or complex numbers.
27#
發(fā)表于 2025-3-26 06:17:44 | 只看該作者
Policy Drivers and Issues in EuropeThe study of the different and discriminant provides some information on ramified primes, and also gives a sort of duality which plays a role both in the algebraic study of ramification and the later chapters on analytic duality. It also gives a good method for computing the ring of algebraic integers in a number field, as in Proposition 10.
28#
發(fā)表于 2025-3-26 09:47:03 | 只看該作者
29#
發(fā)表于 2025-3-26 15:25:02 | 只看該作者
Coman Adrian Viorel,Teodorescu C?t?linaWe recall the formula for summation by parts. If {..} and {..} are sequences of complex numbers, and if we let . be the partial sums, then . We shall consider series . where {..} is a sequence of complex numbers, and . is a complex variable. We write . = . + . with ., . real.
30#
發(fā)表于 2025-3-26 20:51:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昂仁县| 仁布县| 故城县| 休宁县| 巫溪县| 清流县| 屏南县| 武穴市| 营山县| 潮州市| 仁怀市| 普安县| 安仁县| 宿迁市| 博爱县| 衢州市| 明光市| 宁海县| 渭南市| 神农架林区| 襄樊市| 新巴尔虎右旗| 建平县| 永胜县| 临安市| 日照市| 育儿| 泗水县| 达孜县| 灵川县| 于田县| 汉川市| 洪洞县| 绵阳市| 江华| 竹北市| 南京市| 东兰县| 青铜峡市| 柘荣县| 青龙|