找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic K-Theory; V. Srinivas Book 19911st edition Springer Science+Business Media New York 1991 algebra.Algebraic K-theory.K-theory

[復(fù)制鏈接]
樓主: 使入伍
21#
發(fā)表于 2025-3-25 04:00:37 | 只看該作者
Lecture Notes in Computer Scienceove the so called “fundamental theorem” (9.8) which computes K.(A[t, t.]), and to relate the study of 0-cycles on normal surfaces to modules of finite length and finite projective dimension over the local rings at singular points. We begin with Quillen’s localisation theorem, proved in “Higher Algebraic K-theory II”.
22#
發(fā)表于 2025-3-25 07:54:06 | 只看該作者
23#
發(fā)表于 2025-3-25 15:18:51 | 只看該作者
Springer Science+Business Media New York 1991
24#
發(fā)表于 2025-3-25 18:25:11 | 只看該作者
25#
發(fā)表于 2025-3-25 22:04:40 | 只看該作者
26#
發(fā)表于 2025-3-26 00:20:51 | 只看該作者
,Exact Categories and Quillen’s Q-Construction,ive category ζ, satisfying suitable axioms (see Quillen’s paper for details). In all cases relevant to us, the category embeds naturally in some abelian category ., such that ζ, is closed under extensions in ..
27#
發(fā)表于 2025-3-26 04:34:22 | 只看該作者
Fernando Osório,Bernard Amy,Adelmo Cechinive category ζ, satisfying suitable axioms (see Quillen’s paper for details). In all cases relevant to us, the category embeds naturally in some abelian category ., such that ζ, is closed under extensions in ..
28#
發(fā)表于 2025-3-26 09:43:35 | 只看該作者
29#
發(fā)表于 2025-3-26 14:45:28 | 只看該作者
The Plus Construction,? GL(R), π.(BGL(R)) = 0 for i≥2, and that these properties characterise BGL(R) upto homotopy equivalence (since we are assuming that all spaces considered here have the homotopy type of a CW-complex). We give a construction of the classifying space of a discrete group in the next chapter (Example (3.10)).
30#
發(fā)表于 2025-3-26 17:01:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 23:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
碌曲县| 上饶市| 文登市| 古交市| 启东市| 玛沁县| 灌南县| 昭苏县| 延川县| 长春市| 南宫市| 宝鸡市| 驻马店市| 贺州市| 方城县| 抚宁县| 城口县| 兴安盟| 阿鲁科尔沁旗| 政和县| 乾安县| 墨竹工卡县| 甘泉县| 建阳市| 于田县| 汶上县| 金昌市| 嵊泗县| 天柱县| 北票市| 秭归县| 白沙| 五河县| 伊川县| 蒲江县| 阿拉善盟| 甘孜县| 新和县| 神木县| 浪卡子县| 清水河县|