找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Informatics; 4th International Co Franz Winkler Conference proceedings 2011 Springer Berlin Heidelberg 2011 Groebner bases.algebr

[復(fù)制鏈接]
樓主: architect
31#
發(fā)表于 2025-3-26 23:25:28 | 只看該作者
32#
發(fā)表于 2025-3-27 05:10:23 | 只看該作者
33#
發(fā)表于 2025-3-27 07:03:07 | 只看該作者
34#
發(fā)表于 2025-3-27 11:27:33 | 只看該作者
35#
發(fā)表于 2025-3-27 15:12:15 | 只看該作者
36#
發(fā)表于 2025-3-27 21:29:17 | 只看該作者
Lecture Notes in Computer Scienceear to be useful in this context, leading to structural results on ...Here we survey some work of this type. At the end of the paper a new application of this kind is presented: an algebraic characterization of shattering-extremal families and a fast algorithm to recognize them.
37#
發(fā)表于 2025-3-28 01:24:54 | 只看該作者
38#
發(fā)表于 2025-3-28 04:13:41 | 只看該作者
https://doi.org/10.1007/978-3-030-64354-6al word rewrite system for a particular variety in which the classical approaches cannot be applied. Moreover, we obtain infinite single letter deleting rewrite systems for each join-irreducible variety.
39#
發(fā)表于 2025-3-28 07:57:34 | 只看該作者
Lecture Notes in Computer Scienceces thus providing the necessary structures to describe a two-part secret-sharing scheme based on Hadamard designs. Furthermore, we exhibit how some algebraic aspects of secret-sharing cryptography are interpreted in terms of combinatorial design theory, such as the access structure and the security of the secret-sharing schemes.
40#
發(fā)表于 2025-3-28 13:56:20 | 只看該作者
Some Combinatorial Applications of Gr?bner Basesear to be useful in this context, leading to structural results on ...Here we survey some work of this type. At the end of the paper a new application of this kind is presented: an algebraic characterization of shattering-extremal families and a fast algorithm to recognize them.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 04:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
射阳县| 新邵县| 建始县| 连江县| 资源县| 河源市| 剑阁县| 绿春县| 衡山县| 寿光市| 巴林右旗| 长兴县| 青龙| 密山市| 南靖县| 乌拉特后旗| 兴文县| 盐山县| 佛冈县| 永嘉县| 卢湾区| 什邡市| 灵寿县| 会昌县| 夹江县| 甘孜| 钦州市| 青铜峡市| 太白县| 嘉义县| 闻喜县| 东乡县| 柘荣县| 曲阜市| 广水市| 湖北省| 蒲江县| 巴中市| 新龙县| 日喀则市| 京山县|