找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Groups and Lie Groups with Few Factors; Alfonso Bartolo,Giovanni Falcone,Karl Strambach Book 2008 Springer-Verlag Berlin Heidelb

[復制鏈接]
樓主: morphology
11#
發(fā)表于 2025-3-23 10:51:02 | 只看該作者
Environmental Science and Engineeringe a complete classification of three-dimensional connected unipotent algebraic groups defined over a field k of characteristic .2. Some of our results even hold in the case .= 2. A main tool is the theory of extensions, which is particularly efficient for unipotent groups defined over a perfect fiel
12#
發(fā)表于 2025-3-23 16:50:40 | 只看該作者
Decommissioning Offshore Structures of .(see [87]). Observe that for algebraic subgroups .and .of .with .= ., the group .is an algebraic subgroup, too (see [45], 7.4 Corollary, p. 54)..For affine connected algebraic groups we can sharpen Theorem 1 in [87].
13#
發(fā)表于 2025-3-23 20:56:08 | 只看該作者
Multi-Purpose Casks for Power Station FuelIn this section we study groups of maximal and minimal nilpotency class.
14#
發(fā)表于 2025-3-24 02:05:08 | 只看該作者
15#
發(fā)表于 2025-3-24 04:54:32 | 只看該作者
16#
發(fā)表于 2025-3-24 09:14:36 | 只看該作者
17#
發(fā)表于 2025-3-24 11:52:38 | 只看該作者
18#
發(fā)表于 2025-3-24 16:53:38 | 只看該作者
Decommissioning Offshore Structuresgroups .of .we have either .or .. If .is affine, then .is a chain if and only if it has a unique connected algebraic subgroup of dimension ., for any .= 1., because .is, together with a Borel subgroup of ., nilpotent.
19#
發(fā)表于 2025-3-24 19:26:51 | 只看該作者
Decommissioning Offshore Structures of .(see [87]). Observe that for algebraic subgroups .and .of .with .= ., the group .is an algebraic subgroup, too (see [45], 7.4 Corollary, p. 54)..For affine connected algebraic groups we can sharpen Theorem 1 in [87].
20#
發(fā)表于 2025-3-25 00:44:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
遂平县| 大冶市| 阜新市| 宁化县| 朝阳市| 永嘉县| 万年县| 荣成市| 太湖县| 临泽县| 泽库县| 毕节市| 腾冲县| 勃利县| 通州区| 会泽县| 兴化市| 台安县| 阜康市| 仙桃市| 五寨县| 津南区| 凌云县| 清苑县| 宜州市| 武安市| 临桂县| 鄂尔多斯市| 淮南市| 石泉县| 福清市| 措美县| 灌南县| 遂宁市| 绍兴市| 木兰县| 天津市| 肥乡县| 图木舒克市| 华容县| 洪江市|