找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Geometry; Part I: Schemes. Wit Ulrich G?rtz,Torsten Wedhorn Textbook 20101st edition Vieweg+Teubner Verlag | Springer Fachmedien

[復(fù)制鏈接]
樓主: broach
21#
發(fā)表于 2025-3-25 05:38:18 | 只看該作者
Collective Decisions under UncertaintyIn this chapter we study one of the central technical tools of algebraic geometry: If . is a scheme and . and . are .-schemes we define the product . ×. . of . and . over . which is also called fiber product. We do this by defining . ×. . as an .-scheme which satisfies a certain universal property (and by proving that such a scheme always exists).
22#
發(fā)表于 2025-3-25 08:30:55 | 只看該作者
Computer-Based Information SystemsRecall that a topological space . is .ausdorff if and only if the following equivalent conditions are satisfied.
23#
發(fā)表于 2025-3-25 12:27:16 | 只看該作者
https://doi.org/10.1007/978-981-13-2871-8In this chapter, we will study properties of morphisms of schemes which distinguish important subclasses of morphisms. The emphasis in this chapter is on properties that are . local on the source. We start with a relative version of being affine and then study finite and quasi-finite morphisms.
24#
發(fā)表于 2025-3-25 17:28:56 | 只看該作者
Sonia Camacho,Andrea Herrera,Andrés BarriosIn this chapter we will apply the results obtained so far to noetherian schemes of dimension one. Arbitrary one-dimensional noetherian schemes will be .. Examples for absolute curves are rings of integers in number fields (i.e., finite extensions of ?) or schemes of finite type over a field . of pure dimension one. The latter we will ..
25#
發(fā)表于 2025-3-25 22:25:22 | 只看該作者
Gloria Urrea,Alfonso J. Pedraza-MartinezIn this chapter we consider several examples. Each example is given in such a way that it progresses along the theory introduced in the book and that it is possible to study the examples in parallel to the main text. We indicate in the section titles up to which chapter definitions and results are used in that particular section.
26#
發(fā)表于 2025-3-26 02:59:18 | 只看該作者
27#
發(fā)表于 2025-3-26 08:03:38 | 只看該作者
28#
發(fā)表于 2025-3-26 09:47:31 | 只看該作者
29#
發(fā)表于 2025-3-26 13:33:56 | 只看該作者
Affine and proper morphisms,In this chapter, we will study properties of morphisms of schemes which distinguish important subclasses of morphisms. The emphasis in this chapter is on properties that are . local on the source. We start with a relative version of being affine and then study finite and quasi-finite morphisms.
30#
發(fā)表于 2025-3-26 18:27:54 | 只看該作者
One-dimensional schemes,In this chapter we will apply the results obtained so far to noetherian schemes of dimension one. Arbitrary one-dimensional noetherian schemes will be .. Examples for absolute curves are rings of integers in number fields (i.e., finite extensions of ?) or schemes of finite type over a field . of pure dimension one. The latter we will ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 06:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开封市| 盐池县| 临城县| 商丘市| 互助| 东宁县| 祁连县| 镇江市| 册亨县| 永济市| 鄱阳县| 临沂市| 邹城市| 乃东县| 定日县| 潮安县| 栖霞市| 绥芬河市| 新郑市| 枞阳县| 长治县| 高台县| 鱼台县| 屯留县| 当阳市| 曲沃县| 宣汉县| 巴林右旗| 江油市| 乌拉特前旗| 高州市| 灵石县| 亳州市| 罗平县| 涞水县| 襄樊市| 昭平县| 布拖县| 胶州市| 天门市| 广水市|