找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Foundations of Many-Valued Reasoning; Roberto L. O. Cignoli,Itala M. L. D’Ottaviano,Dani Book 2000 Springer Science+Business Med

[復(fù)制鏈接]
樓主: mature
21#
發(fā)表于 2025-3-25 03:35:37 | 只看該作者
Advanced topics,gularizations, and the correspondence between MV-algebras and AF .*-algebras. Strengthening Corollary 4.5.3, we shall show that the tautology problem in the infinite-valued calculus is in fact co-NP-complete, thus having the same complexity as it boolean counterpart. We shall give a proof of Di Nola’s representation theorem for all MV-algebras.
22#
發(fā)表于 2025-3-25 09:38:44 | 只看該作者
23#
發(fā)表于 2025-3-25 14:27:07 | 只看該作者
24#
發(fā)表于 2025-3-25 17:25:02 | 只看該作者
https://doi.org/10.1007/978-81-322-2364-1quipped with truncated addition . = min(1, .) and negation 1 - .. We show that every MV-algebra contains a natural lattice-order. The chapter culminates with Chang’s Subdirect Representation Theorem, stating that if an equation holds in all totally ordered MV-algebras, then the equation holds in all
25#
發(fā)表于 2025-3-25 22:09:17 | 只看該作者
26#
發(fā)表于 2025-3-26 02:17:33 | 只看該作者
https://doi.org/10.1007/978-94-009-0493-4 is satisfied by .. then the equation is automatically satisfied by all MV-algebras. As a consequence of the completeness theorem, .. is easily described as an MV-algebra of piecewise linear continuous [0,1]-valued functions defined over the cube [0, 1].. Known as McNaughton functions, they stand to
27#
發(fā)表于 2025-3-26 06:57:06 | 只看該作者
28#
發(fā)表于 2025-3-26 11:56:50 | 只看該作者
29#
發(fā)表于 2025-3-26 14:28:51 | 只看該作者
https://doi.org/10.1007/978-3-642-45686-2deals of an MV-algebra . and the ideals of the lattice .(.). A stonean ideal of a bounded distributive lattice . is an ideal generated by complemented elements of .. We shall show that the minimal prime lattice ideals of .(.), as well as the stonean ideals of L(.), are always ideals of ..
30#
發(fā)表于 2025-3-26 18:40:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 04:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高尔夫| 盐池县| 南平市| 左云县| 拉萨市| 谷城县| 开远市| 囊谦县| 赫章县| 蒙自县| 永靖县| 会昌县| 池州市| 从化市| 屏边| 罗山县| 巍山| 惠东县| 花莲县| 工布江达县| 阿瓦提县| 会泽县| 乾安县| 灵武市| 新干县| 安溪县| 仪陇县| 剑阁县| 万州区| 九龙坡区| 壤塘县| 道真| 长乐市| 阳泉市| 宾阳县| 镇巴县| 龙井市| 新疆| 嘉禾县| 酒泉市| 搜索|