找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra, Geometry, and Physics in the 21st Century; Kontsevich Festschri Denis Auroux,Ludmil Katzarkov,Yuri Tschinkel Book 2017 Springer In

[復(fù)制鏈接]
樓主: Heel-Spur
11#
發(fā)表于 2025-3-23 09:52:24 | 只看該作者
978-3-319-86738-0Springer International Publishing AG, part of Springer Nature 2017
12#
發(fā)表于 2025-3-23 17:23:54 | 只看該作者
Algebra, Geometry, and Physics in the 21st Century978-3-319-59939-7Series ISSN 0743-1643 Series E-ISSN 2296-505X
13#
發(fā)表于 2025-3-23 18:13:24 | 只看該作者
14#
發(fā)表于 2025-3-23 22:47:53 | 只看該作者
Von der Hardware zur Anwendung,ntroduced by Buchsbaum and Eisenbud and later studied by Kempf, De Concini, Strickland and many other people. It is highly singular and can be seen as a proto-typical singular moduli space in algebraic geometry. We introduce a natural derived analog of Com(V) which is a smooth derived scheme RCom(V)
15#
發(fā)表于 2025-3-24 06:15:04 | 只看該作者
Von der Hardware zur Anwendung, TQFT can be formulated both in the continuum and on the lattice and generalizes Dijkgraaf–Witten theory by replacing a finite group by a finite 2-group. The basic field in this TQFT is a 2-connection on a principal 2-bundle. We classify topological actions for such theories as well as loop and surf
16#
發(fā)表于 2025-3-24 06:49:12 | 只看該作者
17#
發(fā)表于 2025-3-24 13:36:30 | 只看該作者
Von der Hardware zur Anwendung,egories to 2-dimensional ones. Also, we discuss the notion of motivic Donaldson–Thomas invariants (as defined by M. Kontsevich and Y. Soibelman) in the framework of 2-dimensional Calabi–Yau categories. In particular we propose a conjecture which allows one to define Kac polynomials for a 2-dimension
18#
發(fā)表于 2025-3-24 18:38:45 | 只看該作者
Von der Hardware zur Anwendung,We study co-associative fibrations of ..-manifolds. We propose that the adiabatic limit of this structure should be given locally by a maximal submanifold in a space of indefinite signature and set up global versions of the constructions.
19#
發(fā)表于 2025-3-24 21:44:02 | 只看該作者
https://doi.org/10.1007/978-3-540-30029-8We prove the non-commutative Hodge-to-de Rham Degeneration Conjecture of Kontsevich and Soibelman.
20#
發(fā)表于 2025-3-25 01:38:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武夷山市| 新沂市| 项城市| 文安县| 古浪县| 徐汇区| 南木林县| 白玉县| 沈丘县| 任丘市| 惠来县| 伊春市| 岑溪市| 临城县| 五原县| 扶风县| 永兴县| 壶关县| 炎陵县| 临洮县| 晋江市| 昆明市| 龙江县| 小金县| 景东| 吴江市| 电白县| 沁水县| 永川市| 长兴县| 韶山市| 宣威市| 浦北县| 洛南县| 喀喇沁旗| 汨罗市| 红原县| 贵德县| 武汉市| 宜州市| 习水县|