找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra, Geometry and Mathematical Physics; AGMP, Mulhouse, Fran Abdenacer Makhlouf,Eugen Paal,Alexander Stolin Conference proceedings 2014

[復(fù)制鏈接]
樓主: obesity
21#
發(fā)表于 2025-3-25 05:43:57 | 只看該作者
Deformations of Diagramss is a pair . where . is a set of .-modules, and . is a set of .-module homomorphisms ., seen as the .’th order tangent directions. We define the deformation theory for diagrams, making these the fundamental points in noncommutative algebraic geometry. Two simple examples of the theory are given: Th
22#
發(fā)表于 2025-3-25 10:30:23 | 只看該作者
Algebra, Geometry and Mathematical Physics978-3-642-55361-5Series ISSN 2194-1009 Series E-ISSN 2194-1017
23#
發(fā)表于 2025-3-25 12:17:07 | 只看該作者
Auf dem Weg in ein neues Mittelalter? The solution is obtained by means of its reduction to an extension of the quantization problem. While the classical quantization problem consists in finding .-product deformations of the commutative algebras of functions, we consider the .-case when the initial object is already a noncommutative algebra.
24#
發(fā)表于 2025-3-25 16:20:06 | 只看該作者
25#
發(fā)表于 2025-3-25 20:25:53 | 只看該作者
Durchführung der Basisinstallation with an invariant, nondegenerate and symmetric bilinear forms that are also .-symmetric and .-invariant where . and . are twisting maps. We provide various constructions of quadratic .-ary Hom-Nambu algebras. Also is discussed their connections with representation theory and centroids.
26#
發(fā)表于 2025-3-26 03:43:38 | 只看該作者
27#
發(fā)表于 2025-3-26 08:19:13 | 只看該作者
Abdenacer Makhlouf,Eugen Paal,Alexander StolinIncludes supplementary material:
28#
發(fā)表于 2025-3-26 08:44:26 | 只看該作者
29#
發(fā)表于 2025-3-26 13:24:12 | 只看該作者
30#
發(fā)表于 2025-3-26 17:49:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 17:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿城市| 漾濞| 江华| 惠州市| 喀喇沁旗| 北京市| 合江县| 凤翔县| 中江县| 蚌埠市| 蒲江县| 宁河县| 湖口县| 武胜县| 宽城| 余江县| 织金县| 文安县| 齐河县| 华池县| 融水| 杭锦后旗| 封开县| 商水县| 冕宁县| 葵青区| 凤冈县| 平江县| 田林县| 正安县| 江门市| 鹤壁市| 新和县| 肃宁县| 台北县| 永和县| 福海县| 平罗县| 惠州市| 通化县| 大厂|