找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra, Codes and Cryptology; First International Cheikh Thiecoumba Gueye,Edoardo Persichetti,Johann Conference proceedings 2019 Springer

[復(fù)制鏈接]
樓主: chondrocyte
41#
發(fā)表于 2025-3-28 15:39:17 | 只看該作者
42#
發(fā)表于 2025-3-28 20:00:41 | 只看該作者
On the Computation of Minimal Free Resolutions with Integer CoefficientsLet . be an ideal of .. We introduce in this paper the concept of .ideal . of . which is a proper ideal of . and we propose a technique for computing a weak Gr?bner basis for .. This result is central and leads to the computation of a minimal free resolution for . as an .module.
43#
發(fā)表于 2025-3-29 00:27:23 | 只看該作者
On the Splitting Field of Some Polynomials with Class Number OneLet .(.) be an irreducible monic polynomial of ., . be the discriminant of .(.) and . be the splitting field of .(.). In this paper, we study the class number one problem for the splitting field . or the condition for which the class number of . is equal to 1 using an algebraic approach based on the Hilbert class field towers of some fields.
44#
發(fā)表于 2025-3-29 06:18:25 | 只看該作者
45#
發(fā)表于 2025-3-29 09:11:52 | 只看該作者
46#
發(fā)表于 2025-3-29 11:50:00 | 只看該作者
47#
發(fā)表于 2025-3-29 17:59:08 | 只看該作者
Politics of Citizenship and Migrationduce the public key size. In our scheme the underlying Generalized Reed-Solomon code is not secret, so the classical attacks such as square code or folding attacks have no more purpose against it. In addition one part of the security of this scheme is based on hard problems in coding theory like ..
48#
發(fā)表于 2025-3-29 22:20:26 | 只看該作者
https://doi.org/10.1007/978-3-031-23379-1ately, most of these variants are vulnerable to structural attacks because of the algebraic structure of the underlying codes. In this work, we propose the first efficient secure scheme based on polar codes (i.e., .), which is inspired by RLCE scheme, a candidate for the NIST post-quantum cryptograp
49#
發(fā)表于 2025-3-30 01:46:32 | 只看該作者
50#
發(fā)表于 2025-3-30 05:09:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
婺源县| 修水县| 涞源县| 合水县| 久治县| 惠水县| 黑龙江省| 青河县| 五大连池市| 固阳县| 泗水县| 敦化市| 梅州市| 内黄县| 罗田县| 忻城县| 兴安县| 淮滨县| 新乡市| 保定市| 浦东新区| 兴义市| 上栗县| 唐山市| 兴和县| 彰化县| 泰来县| 南雄市| 凌海市| 孟连| 石阡县| 桐乡市| 五河县| 富民县| 耿马| 青冈县| 泸州市| 游戏| 南城县| 石景山区| 云浮市|