找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra for Applications; Cryptography, Secret Arkadii Slinko Textbook 2020Latest edition Springer Nature Switzerland AG 2020 public key cr

[復(fù)制鏈接]
樓主: relapse
11#
發(fā)表于 2025-3-23 10:05:21 | 只看該作者
Groups,ups such as isomorphism, subgroups, cyclic subgroups, and orders of elements. Lastly, we consider the group of points of an elliptic curve over a finite field and explain the basics of the elliptic key cryptography and ElGamal cryptosystem.
12#
發(fā)表于 2025-3-23 14:53:28 | 只看該作者
Polynomials,ension of . and in this context we discuss minimal annihilating polynomials which we will need in Chap.?7 for the construction of good error-correcting codes. Finally, we discuss permutation polynomials and a cryptosystem based on them.
13#
發(fā)表于 2025-3-23 19:41:17 | 只看該作者
14#
發(fā)表于 2025-3-24 01:39:28 | 只看該作者
Klein woordenboek voor de huisarts,ension of . and in this context we discuss minimal annihilating polynomials which we will need in Chap.?7 for the construction of good error-correcting codes. Finally, we discuss permutation polynomials and a cryptosystem based on them.
15#
發(fā)表于 2025-3-24 05:11:37 | 只看該作者
16#
發(fā)表于 2025-3-24 06:35:55 | 只看該作者
Cryptology, is another goal of cryptography which is any process by which you verify that someone is indeed who they claim they are. Digital signatures are a special technique for achieving authentication. Nowadays cryptography has matured and it is addressing an ever increasing number of other goals like secr
17#
發(fā)表于 2025-3-24 13:10:09 | 只看該作者
18#
發(fā)表于 2025-3-24 14:49:49 | 只看該作者
19#
發(fā)表于 2025-3-24 20:14:50 | 只看該作者
Polynomials,me that we discuss in Chap.?6. Then, after proving some further results on polynomials, we give a construction of a finite field whose cardinality is a power of a prime. The field of cardinality . is constructed as polynomials over . modulo an irreducible polynomial of degree .. This field is an ext
20#
發(fā)表于 2025-3-25 02:45:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 06:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜阳县| 渑池县| 咸阳市| 加查县| 洛南县| 六枝特区| 阿拉尔市| 锡林郭勒盟| 巴林左旗| 南和县| 永登县| 德安县| 饶平县| 万荣县| 庆云县| 博野县| 彩票| 保定市| 衡水市| 岳阳市| 资中县| 新沂市| 黄冈市| 昌都县| 墨玉县| 如东县| 台江县| 治多县| 喀喇沁旗| 永丰县| 邵东县| 顺昌县| 龙川县| 昔阳县| 乐都县| 永顺县| 永年县| 潞城市| 晋江市| 莆田市| 民权县|