找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Homological Algebra; A. I. Kostrikin,I. R. Shafarevich Book 1994 Springer-Verlag Berlin Heidelberg 1994 D-modules.Homological algebra.Kate

[復(fù)制鏈接]
樓主: Clique
11#
發(fā)表于 2025-3-23 11:59:43 | 只看該作者
Kalkulation von Fahrzeugsch?denLet . be an additive category. The structure of a . on . is given by the following data . that must satisfy the axioms TR1-TR4 below.
12#
發(fā)表于 2025-3-23 14:32:16 | 只看該作者
https://doi.org/10.1007/978-3-322-98682-5Let . be a topological space. A finite decomposition of . into nonempty disjoint locally closed subsets (strata) is called a . if the closure of any stratum is a union of strata.
13#
發(fā)表于 2025-3-23 18:24:19 | 只看該作者
Günther Becher,Dieter Bahr,Wolfgang ViewegConsider a system . of linear equations.where .. are unknown functions in variables ..,…,.., .. are linear differential operators (with variable coefficients). In the classical theory of differential equations we are interested in solutions of such systems.
14#
發(fā)表于 2025-3-23 22:10:56 | 只看該作者
The Language of Categories,A . is the following collection of data:
15#
發(fā)表于 2025-3-24 06:04:00 | 只看該作者
16#
發(fā)表于 2025-3-24 10:24:06 | 只看該作者
Derived Categories and Derived Functors,A morphism .: .. → .. of complexes in an abelian category . is said to be a . if the corresponding homology morphism ..(?): ..(..) → ..(..) is an isomorphism for any ..
17#
發(fā)表于 2025-3-24 13:33:24 | 只看該作者
Triangulated Categories,Let . be an additive category. The structure of a . on . is given by the following data . that must satisfy the axioms TR1-TR4 below.
18#
發(fā)表于 2025-3-24 15:21:39 | 只看該作者
19#
發(fā)表于 2025-3-24 22:28:00 | 只看該作者
,-Modules,Consider a system . of linear equations.where .. are unknown functions in variables ..,…,.., .. are linear differential operators (with variable coefficients). In the classical theory of differential equations we are interested in solutions of such systems.
20#
發(fā)表于 2025-3-25 00:40:42 | 只看該作者
Homological Algebra978-3-642-57911-0Series ISSN 0938-0396
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 07:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凤阳县| 南部县| 抚顺市| 板桥市| 偏关县| 吉木乃县| 喜德县| 称多县| 长沙市| 六枝特区| 桑日县| 株洲县| 开平市| 怀仁县| 大新县| 肇东市| 新河县| 大悟县| 武强县| 天峨县| 兴隆县| 固原市| 新兴县| 扎赉特旗| 昂仁县| 灵台县| 贵定县| 任丘市| 卫辉市| 镶黄旗| 建瓯市| 大姚县| 崇左市| 珠海市| 阿拉善左旗| 诸城市| 乐都县| 桃园县| 兰州市| 清水河县| 鹿邑县|