找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra I; Textbook for Student Alexey L. Gorodentsev Textbook 2016 Springer International Publishing AG 2016 Fields.Rings.Modules.Groups.L

[復制鏈接]
查看: 9386|回復: 62
樓主
發(fā)表于 2025-3-21 19:00:54 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Algebra I
期刊簡稱Textbook for Student
影響因子2023Alexey L. Gorodentsev
視頻videohttp://file.papertrans.cn/153/152465/152465.mp4
發(fā)行地址Challenging amount of material thoughtfully organized for deep and fast learning.Large collection of exercises equipped with hints and a lot of problems for independent solution.Simple modern explanat
圖書封面Titlebook: Algebra I; Textbook for Student Alexey L. Gorodentsev Textbook 2016 Springer International Publishing AG 2016 Fields.Rings.Modules.Groups.L
影響因子.This book is the first volume of an intensive “Russian-style” two-year graduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings,?modules, algebras, groups, and categories – and explains the main principles of and methods for working with them. .The?course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra,?representation theory,?category theory, commutative algebra, Galois theory, and algebraic?geometry – topics that are often overlooked in standard undergraduate courses..This textbook is based on courses the author has conducted at the Independent University of Moscow and at?the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for?independent study..?.
Pindex Textbook 2016
The information of publication is updating

書目名稱Algebra I影響因子(影響力)




書目名稱Algebra I影響因子(影響力)學科排名




書目名稱Algebra I網(wǎng)絡公開度




書目名稱Algebra I網(wǎng)絡公開度學科排名




書目名稱Algebra I被引頻次




書目名稱Algebra I被引頻次學科排名




書目名稱Algebra I年度引用




書目名稱Algebra I年度引用學科排名




書目名稱Algebra I讀者反饋




書目名稱Algebra I讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:06:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:41:54 | 只看該作者
Die Unwiderrufbarkeit der Einwilligung .. We have seen in Sect.?. on p.?136 that every linear map is uniquely determined by its values on an arbitrarily chosen basis. In particular, every covector .?∈?.. is uniquely determined by numbers . as . runs trough some basis of .. The next lemma is a particular case of Proposition?. on p.?137.
地板
發(fā)表于 2025-3-22 05:00:49 | 只看該作者
Das Schutzbedürfnis des Individuumsboth the left multiplication map ..:?.?→?., . ? ., and the right multiplication map ..:?.?→?., . ? ., are linear. This means that multiplication of vectors by constants commutes with the algebra multiplication: (.).?=?.(.)?=?.(.) for all . and .,?.?∈?., and the standard distributive law holds for ad
5#
發(fā)表于 2025-3-22 10:21:56 | 只看該作者
6#
發(fā)表于 2025-3-22 13:58:52 | 只看該作者
TEMEX und das allgemeine Recht,., called the . of .. By definition, points of . are 1-dimensional vector subspaces in ., or equivalently, lines in . passing through the origin. To observe such points as usual “dots,” we have to use a screen, that is, an .-dimensional affine hyperplane in . that does not pass through the origin (s
7#
發(fā)表于 2025-3-22 19:26:26 | 只看該作者
8#
發(fā)表于 2025-3-23 01:09:54 | 只看該作者
9#
發(fā)表于 2025-3-23 04:19:03 | 只看該作者
https://doi.org/10.1007/978-3-658-37268-2resulting vector space over . is denoted by . and called the . of the complex vector space .. For every basis ..,?..,?.,?.. of . over ., the vectors ..,?..,?.,?..,?..,?..,?.,?.. form a basis of . over ., because for every .?∈?., the uniqueness of the expansion . is equivalent to the uniqueness of th
10#
發(fā)表于 2025-3-23 09:17:14 | 只看該作者
Datenschutz bei Wearable Computingvector .?∈?. with a ... Since . the Hermitian inner product is uniquely recovered from the norm function and the multiplication-by-. operator as . Note that this agrees with the general ideology of K?hler triples from Sect.?. on p.?471.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 19:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
金乡县| 伊吾县| 通州市| 高州市| 德阳市| 保康县| 北安市| 塔城市| 莒南县| 合江县| 上虞市| 长子县| 中西区| 西华县| 大足县| 乐亭县| 江北区| 化隆| 东山县| 依安县| 湟源县| 台州市| 丰原市| 汨罗市| 五大连池市| 江达县| 盐城市| 湘乡市| 平安县| 英吉沙县| 大田县| 靖宇县| 泸西县| 湟源县| 宁蒗| 房山区| 抚顺市| 饶阳县| 遵义县| 新乡市| 临武县|