找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra 1; Groups, Rings, Field Ramji Lal Textbook 2017 Springer Nature Singapore Pte Ltd. 2017 Algebra.Number System.Group Theory.Arithmet

[復(fù)制鏈接]
樓主: 威風(fēng)
21#
發(fā)表于 2025-3-25 06:43:45 | 只看該作者
22#
發(fā)表于 2025-3-25 07:44:12 | 只看該作者
Entity Relationship - Modellierung,This chapter is devoted to the study of rings in relation to their arithmetical properties.
23#
發(fā)表于 2025-3-25 13:23:36 | 只看該作者
24#
發(fā)表于 2025-3-25 18:25:59 | 只看該作者
Number System,This is the first introduction to arithmetic in which we develop number systems (including real number system and complex number system) starting from the Peano’s axiom. We also discuss linear diophantine equation and linear congruences.
25#
發(fā)表于 2025-3-25 22:11:22 | 只看該作者
Group Theory,One of the most fundamental concepts in mathematics today is that of a group. This present chapter concerns the basic introduction to groups.
26#
發(fā)表于 2025-3-26 00:21:08 | 只看該作者
Fundamental Theorems,This chapter is devoted to some fundamental theorems such as Lagrange Theorem and Isomorphism Theorems. We also discuss the direct decomposition of groups into indecomposable groups.
27#
發(fā)表于 2025-3-26 06:17:41 | 只看該作者
Permutation Groups and Classical Groups,The two main sources of groups are the permutation groups and the matrix groups. This chapter is devoted to introduce these groups, and to study some of their fundamental and elementary properties.
28#
發(fā)表于 2025-3-26 09:23:31 | 只看該作者
Elementary Theory of Rings and Fields,Ring is an important algebraic structure with two compatible binary operations whose intrinsic presence in almost every discipline of mathematics is frequently noticed. The theory of rings, in the beginning, will be developed on the pattern the theory of groups was developed.
29#
發(fā)表于 2025-3-26 14:18:24 | 只看該作者
30#
發(fā)表于 2025-3-26 19:15:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 15:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武义县| 陆丰市| 井冈山市| 平山县| 宜阳县| 全南县| 五原县| 旅游| 汉源县| 彰化市| 巢湖市| 北安市| 永平县| 大悟县| 房山区| 商城县| 高唐县| 盐城市| 平塘县| 慈溪市| 邛崃市| 荔浦县| 鄂尔多斯市| 屏南县| 榕江县| 东阿县| 洛宁县| 虞城县| 右玉县| 益阳市| 西乡县| 双城市| 北辰区| 双鸭山市| 高青县| 垦利县| 广元市| 隆林| 瑞昌市| 东辽县| 洪江市|