找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra; Siegfried Bosch Textbook 19931st edition Springer-Verlag Berlin Heidelberg 1993 Algebra.Galois-Theorie.Galoistheorie.Gruppentheor

[復(fù)制鏈接]
樓主: 厭倦了我
11#
發(fā)表于 2025-3-23 10:33:17 | 只看該作者
Textbook 19931st editionStudenten Freunde finden wird. Bosch bietet neben zahlreichen Aufgaben, einführenden und motivierenden Vorbemerkungen auch Ausblicke auf neuere Entwicklungen. Auch selten im Lehrbuch behandelte Themen wie Resultanten, Diskriminanten und symmetrische Funktionen werden angesprochen. Ein klares, modern
12#
發(fā)表于 2025-3-23 14:53:11 | 只看該作者
13#
發(fā)表于 2025-3-23 22:02:02 | 只看該作者
Anwendungen der Galois-Theorie,arables Polynom . mit Koeffizienten aus einem K?rper . die algebraische Gleichung .(.) = 0 genau dann durch Radikale aufl?sbar ist, wenn die zugeh?rige Galois-Gruppe im gruppentheoretischen Sinne aufl?sbar ist.
14#
發(fā)表于 2025-3-24 01:57:25 | 只看該作者
15#
發(fā)表于 2025-3-24 02:45:07 | 只看該作者
Einsatz des Entwurfsobjekt-Datenmodells, Gleichung wird allgemein als . Gleichung für . bezeichnet. Ihr . ist gegeben durch den Exponenten der h?chsten wirklich vorkommenden Potenz von .. Algebraische Gleichungen vom Grad 1 nennt man .. Das Studium linearer Gleichungen oder, allgemeiner, linearer Gleichungssysteme in endlich vielen unbekannten Gr??en ist ein zentrales Problem der ..
16#
發(fā)表于 2025-3-24 08:22:41 | 只看該作者
17#
發(fā)表于 2025-3-24 13:15:38 | 只看該作者
18#
發(fā)表于 2025-3-24 18:09:45 | 只看該作者
,Einführung, Gleichung wird allgemein als . Gleichung für . bezeichnet. Ihr . ist gegeben durch den Exponenten der h?chsten wirklich vorkommenden Potenz von .. Algebraische Gleichungen vom Grad 1 nennt man .. Das Studium linearer Gleichungen oder, allgemeiner, linearer Gleichungssysteme in endlich vielen unbekannten Gr??en ist ein zentrales Problem der ..
19#
發(fā)表于 2025-3-24 19:56:45 | 只看該作者
,Algebraische K?rpererweiterungen,n ? gültige Gleichung aufzufassen ist. Um die “Natur” der Nullstelle α besser beschreiben zu k?nnen, ist man allerdings darum bemüht, einen m?glichst kleinen Zahlbereich zu konstruieren, in dem die Gleichung .(α) = 0 gelesen werden kann. Ein solcher Bereich wird z. B. durch den kleinsten Unterring von ? gegeben, der ? und α enth?lt, also durch
20#
發(fā)表于 2025-3-25 00:46:39 | 只看該作者
Galois-Theorie,wir einen Zerf?llungsk?rper . zu . auch mit Hilfe des Verfahrens von Kronecker konstruieren, indem wir sukzessive alle L?sungen von .(.) = 0 zu . adjungieren. Die Struktur der Erweiterung . ist zu kl?ren, wenn man Aussagen über die “Natur” der L?sungen von .(.) = 0 machen m?chte, z. B. wenn man die Gleichung durch Radikale aufl?sen m?chte.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 17:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大同市| 罗甸县| 青冈县| 宜昌市| 榆社县| 平潭县| 松阳县| 威信县| 柏乡县| 太保市| 伽师县| 遂川县| 荥阳市| 云和县| 兴文县| 汝阳县| 元氏县| 改则县| 宜阳县| 夹江县| 五大连池市| 武义县| 色达县| 方正县| 永宁县| 怀化市| 翁牛特旗| 绥阳县| 孙吴县| 会泽县| 江阴市| 宣汉县| 昭苏县| 绥江县| 方正县| 石家庄市| 江津市| 东乡族自治县| 丰都县| 万宁市| 霍城县|