找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra; Gruppen - Ringe - K? Christian Karpfinger,Kurt Meyberg Textbook 20102nd edition Spektrum Akademischer Verlag 2010 Abelsche Gruppe.

[復(fù)制鏈接]
樓主: DART
51#
發(fā)表于 2025-3-30 10:52:46 | 只看該作者
52#
發(fā)表于 2025-3-30 13:56:13 | 只看該作者
https://doi.org/10.1007/978-3-8274-2601-7Abelsche Gruppe; Algebra; Galois-Theorie; Gruppentheorie; K?rpertheorie; Ringtheorie; Verband
53#
發(fā)表于 2025-3-30 16:52:22 | 只看該作者
Spektrum Akademischer Verlag 2010
54#
發(fā)表于 2025-3-30 23:01:17 | 只看該作者
Gruppen, Cayley 1854 (für endliche Gruppen), auf L. Kronecker 1870 (für abelsche Gruppen) und in endgültiger Form auf H. Weber 1892 zurück. Vorher wurden nur endliche Permutationsgruppen und Gruppen geometrischer Transformationen betrachtet.
55#
發(fā)表于 2025-3-31 02:28:31 | 只看該作者
56#
發(fā)表于 2025-3-31 06:51:16 | 只看該作者
57#
發(fā)表于 2025-3-31 09:21:07 | 只看該作者
Zyklische Gruppen, Dabei ist á.? = {. | . ∈ ?}. Zyklische Gruppen sind also endlich oder abz?hlbar unendlich. Zu jeder natürlichen Zahl . kennen wir auch eine zyklische Gruppe mit . Elementen, n?mlich ?. = ?/.?. Und z ist die klassische unendliche zyklische Gruppe: ? = á1?. Wir werden in diesem Abschnitt die zyklisch
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 02:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临沧市| 莱阳市| 吐鲁番市| 青浦区| 汪清县| 彩票| 准格尔旗| 惠州市| 新和县| 喀什市| 塘沽区| 修文县| 云梦县| 通许县| 五原县| 金沙县| 安乡县| 绥阳县| 昌宁县| 宝山区| 日喀则市| 武穴市| 仁寿县| 孟州市| 额尔古纳市| 彭州市| 额尔古纳市| 黑山县| 万源市| 祥云县| 土默特右旗| 广饶县| 左贡县| 丰镇市| 阜平县| 灌云县| 天等县| 元阳县| 桃园市| 抚远县| 桐城市|