找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra; Some Recent Advances I. B. S. Passi Book 1999 Hindustan Book Agency (India) and Indian National Science Academy 1999 Area.Volume.a

[復制鏈接]
樓主: 悲傷我
51#
發(fā)表于 2025-3-30 09:48:11 | 只看該作者
Alternative Loop Rings and Related Topics,, see Definition 3.1). The . of . over . was introduced in 1944 by R.H. Bruck (1944) as a means to obtain a family of examples of nonassociative algebras and is defined in a way similar to that of a group algebra; i.e., as the free A-module with basis ., with a multiplication induced distributively from the operation in .
52#
發(fā)表于 2025-3-30 15:20:52 | 只看該作者
Md Musfique Anwar,Jianxin Li,Chengfei Liu(1981) gives some later developments (see also the books of Sehgal, 1989 and Karpilovsky, 1989). In this article our main aim is to survey the more recent developments. In § 1 we review the case when . is a field and in §2 the case of the integral group ring is considered.
53#
發(fā)表于 2025-3-30 16:53:17 | 只看該作者
Xiu Susie Fang,Xianzhi Wang,Quan Z. Shenger fields, a main step in the proof of these conjectures is a classification theorem of hermitian forms over involutorial division algebras defined over fields of virtual cohomological dimension ≤ 2, which is described in § 6 and § 7.
54#
發(fā)表于 2025-3-30 21:10:59 | 只看該作者
Lei Li,Xiaofang Zhou,Kevin Zhengtally, to the construction in ([PI]) of non diagonalisable, (in fact indecomposable), non singular symmetric 4 × 4 matrices of determinant one over the polynomial ring in two variables over the field of real numbers, producing remarkable counter examples to the so called quadratic analogue of Serre’
55#
發(fā)表于 2025-3-31 01:29:11 | 只看該作者
Unit Groups of Group Rings,(1981) gives some later developments (see also the books of Sehgal, 1989 and Karpilovsky, 1989). In this article our main aim is to survey the more recent developments. In § 1 we review the case when . is a field and in §2 the case of the integral group ring is considered.
56#
發(fā)表于 2025-3-31 05:59:41 | 只看該作者
57#
發(fā)表于 2025-3-31 09:28:12 | 只看該作者
58#
發(fā)表于 2025-3-31 15:55:50 | 只看該作者
10樓
59#
發(fā)表于 2025-3-31 20:43:52 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 18:56
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
新宁县| 都匀市| 通辽市| 镇江市| 山阳县| 利川市| 新巴尔虎左旗| 洮南市| 汾西县| 和政县| 高淳县| 大连市| 石家庄市| 柯坪县| 龙川县| 南开区| 临高县| 青浦区| 旬阳县| 东山县| 阿坝| 齐河县| 伽师县| 玉山县| 班玛县| 浮梁县| 醴陵市| 措美县| 台北市| 怀远县| 彝良县| 和田县| 五大连池市| 吉木萨尔县| 沙坪坝区| 永仁县| 江华| 会泽县| 定日县| 南充市| 府谷县|