找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Africa and Mathematics; From Colonial Findin Dirk Huylebrouck Book 2019 Springer Nature Switzerland AG 2019 ethnomathematics.sand drawings.

[復(fù)制鏈接]
樓主: 面臨
21#
發(fā)表于 2025-3-25 04:00:00 | 只看該作者
https://doi.org/10.1007/978-3-642-21837-8Africa, but confined to astronomy, because this domain is important for the interpretation of the Ishango rods as moon calendars. The structural elements of African music, discussed in the second part of the chapter, are emphasized because of their importance for an interpretation of the carvings on
22#
發(fā)表于 2025-3-25 10:32:23 | 只看該作者
23#
發(fā)表于 2025-3-25 12:11:09 | 只看該作者
Cosmetic Surgery in Two Healthcare Contexts,n clothing have an abundance of structural characteristics, going from abstract graphs over geometric entertainments with elementary figures to repetitive fractal structures. Some of these examples are debatable, such as the alleged golden section proportion in African art or the fractal properties
24#
發(fā)表于 2025-3-25 19:21:26 | 只看該作者
25#
發(fā)表于 2025-3-25 20:52:45 | 只看該作者
26#
發(fā)表于 2025-3-26 03:04:04 | 只看該作者
27#
發(fā)表于 2025-3-26 07:21:45 | 只看該作者
28#
發(fā)表于 2025-3-26 10:26:33 | 只看該作者
Applications of Polymers in Hair Careod merits its title of “oldest finding in the field of mathematics”. Yet, could it in addition pretend to be “at the origin of mathematics” or was it a rather singular finding? This meaning is discussed in this chapter, as it presents summaries of results from linguistics, archaeology, mathematics,
29#
發(fā)表于 2025-3-26 16:01:27 | 只看該作者
30#
發(fā)表于 2025-3-26 19:49:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 00:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
都匀市| 华蓥市| 桓台县| 临颍县| 皋兰县| 扎兰屯市| 临城县| 恩平市| 白沙| 安多县| 江口县| 桂阳县| 武汉市| 鹤峰县| 虎林市| 新巴尔虎右旗| 芦山县| 安仁县| 丰县| 外汇| 平江县| 新昌县| 日土县| 扬州市| 达日县| 周宁县| 克拉玛依市| 合作市| 屏南县| 巴南区| 塔河县| 沐川县| 襄汾县| 荔浦县| 卢龙县| 江源县| 禄丰县| 军事| 玉屏| 广德县| 江北区|