找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Adversarial Machine Learning; Yevgeniy Vorobeychik,Murat Kantarcioglu Book 2018 Springer Nature Switzerland AG 2018

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-27 00:18:21 | 只看該作者
Categories of Attacks on Machine Learning,ulnerabilities centers around precise threat models. In this chapter, we present a general categorization of threat models, or attacks, in the context of machine learning. Our subsequent detailed presentation of the specific attacks will be grounded in this categorization.
32#
發(fā)表于 2025-3-27 02:06:25 | 只看該作者
33#
發(fā)表于 2025-3-27 06:47:01 | 只看該作者
34#
發(fā)表于 2025-3-27 10:52:37 | 只看該作者
Attacks at Decision Time, spam, phishing, and malware detectors trained to distinguish between benign and malicious instances, with adversaries manipulating the nature of the objects, such as introducing clever word misspellings or substitutions of code regions, in order to be misclassified as benign.
35#
發(fā)表于 2025-3-27 14:27:05 | 只看該作者
Defending Against Decision-Time Attacks,follow-up question: how do we defend against such attacks? As most of the literature on robust learning in the presence of decision-time attacks is focused on supervised learning, our discussion will be restricted to this setting. Additionally, we deal with an important special case of such attacks
36#
發(fā)表于 2025-3-27 18:05:06 | 只看該作者
Data Poisoning Attacks,they take place . learning, when the learned model is in operational use. We now turn to another broad class of attacks which target the learning . by tampering directly with data used for training these.
37#
發(fā)表于 2025-3-27 23:10:52 | 只看該作者
38#
發(fā)表于 2025-3-28 05:35:52 | 只看該作者
Attacking and Defending Deep Learning,natural language processing [Goodfellow et al., 2016]. This splash was soon followed by a series of illustrations of fragility of deep neural network models to small . changes to inputs. While initially these were seen largely as robustness tests rather than modeling actual attacks, the language of
39#
發(fā)表于 2025-3-28 08:55:14 | 只看該作者
40#
發(fā)表于 2025-3-28 13:46:36 | 只看該作者
1939-4608 ontent of malicius objects they develop...The field of adversarial machine learning has emerged to study vulnerabilities of machine learning approaches in adver978-3-031-00452-0978-3-031-01580-9Series ISSN 1939-4608 Series E-ISSN 1939-4616
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 08:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武义县| 图们市| 泸定县| 陇南市| 盘锦市| 平远县| 日喀则市| 阳春市| 安国市| 兴业县| 亚东县| 抚顺市| 巴彦淖尔市| 博白县| 西盟| 漯河市| 永宁县| 东方市| 林甸县| 凤山县| 屏南县| 永仁县| 铅山县| 永德县| 阿坝| 枣强县| 枣阳市| 屏东县| 五台县| 邹城市| 黄龙县| 丹阳市| 仁布县| 平顺县| 岱山县| 寿光市| 湘西| 馆陶县| 如东县| 上饶县| 上高县|