找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Adversarial Machine Learning; Yevgeniy Vorobeychik,Murat Kantarcioglu Book 2018 Springer Nature Switzerland AG 2018

[復制鏈接]
11#
發(fā)表于 2025-3-23 13:07:27 | 只看該作者
12#
發(fā)表于 2025-3-23 13:54:30 | 只看該作者
Eric J. Kostelich,Ernest Barreto spam, phishing, and malware detectors trained to distinguish between benign and malicious instances, with adversaries manipulating the nature of the objects, such as introducing clever word misspellings or substitutions of code regions, in order to be misclassified as benign.
13#
發(fā)表于 2025-3-23 18:43:39 | 只看該作者
14#
發(fā)表于 2025-3-23 23:58:38 | 只看該作者
Kai Ma,Pei Liu,Jie Yang,Xinping Guanthey take place . learning, when the learned model is in operational use. We now turn to another broad class of attacks which target the learning . by tampering directly with data used for training these.
15#
發(fā)表于 2025-3-24 03:09:18 | 只看該作者
Kai Ma,Pei Liu,Jie Yang,Xinping Guan. as follows. We start with the pristine training dataset . of . labeled examples. Suppose that an unknown proportion α of the dataset . is then corrupted arbitrarily (i.e., both feature vectors and labels may be corrupted), resulting in a corrupted dataset .. The goal is to learn a model . on the c
16#
發(fā)表于 2025-3-24 08:13:38 | 只看該作者
Kai Ma,Pei Liu,Jie Yang,Xinping Guannatural language processing [Goodfellow et al., 2016]. This splash was soon followed by a series of illustrations of fragility of deep neural network models to small . changes to inputs. While initially these were seen largely as robustness tests rather than modeling actual attacks, the language of
17#
發(fā)表于 2025-3-24 11:49:01 | 只看該作者
18#
發(fā)表于 2025-3-24 17:32:31 | 只看該作者
Book 2018 learning into a major tool employed across a broad array of tasks including vision, language, finance, and security. However, success has been accompanied with important new challenges: many applications of machine learning are adversarial in nature. Some are adversarial because they are safety cri
19#
發(fā)表于 2025-3-24 22:36:48 | 只看該作者
Decision Support via Fuzzy Technologyike, trying to maintain productivity despite external threats, and .the bad guys—who spread malware, send spam and phishing emails, hack into vulnerable computing devices, steal data, or execute denial-of-service attacks, for whatever malicious ends they may have.
20#
發(fā)表于 2025-3-25 01:08:35 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-24 12:41
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
会同县| 岑溪市| 五河县| 诏安县| 华坪县| 贡嘎县| 阳西县| 开鲁县| 泾阳县| 和硕县| 元朗区| 佛坪县| 大安市| 兰溪市| 吴堡县| 白河县| 惠安县| 若尔盖县| 浠水县| 桃园县| 古丈县| 内江市| 乐亭县| 奉新县| 江川县| 扎赉特旗| 惠州市| 邯郸市| 平潭县| 拉孜县| 岚皋县| 瑞丽市| 牙克石市| 饶平县| 阿拉尔市| 浦城县| 满洲里市| 定州市| 峨眉山市| 晋州市| 景东|