找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Variable Structure Systems and Sliding Mode Control—Theory and Applications; Shihua Li,Xinghuo Yu,Xiangyu Wang Book 2018 Sprin

[復制鏈接]
樓主: Flange
11#
發(fā)表于 2025-3-23 13:11:34 | 只看該作者
12#
發(fā)表于 2025-3-23 16:49:39 | 只看該作者
Discrete Event-Triggered Sliding Mode Controlsystem is retained. Here, event condition is continuously monitored to generate the triggering instant. So, this minimizes resource utilization and control effort while achieving certain control objective. Recently, event-triggered sliding mode control (SMC) is proposed in [., .] to ensure the robus
13#
發(fā)表于 2025-3-23 21:43:36 | 只看該作者
14#
發(fā)表于 2025-3-23 23:05:44 | 只看該作者
15#
發(fā)表于 2025-3-24 05:33:49 | 只看該作者
16#
發(fā)表于 2025-3-24 09:45:43 | 只看該作者
17#
發(fā)表于 2025-3-24 13:21:55 | 只看該作者
Robustness of Homogeneous and Homogeneizable Differential Inclusions Two sets of conditions are developed for a class of homogeneous and homogenizable systems described by differential inclusions. The advantage of the proposed conditions is that they are not based on the Lyapunov function method, but more related to algebraic operations over the right-hand side of the system.
18#
發(fā)表于 2025-3-24 15:07:37 | 只看該作者
19#
發(fā)表于 2025-3-24 20:42:50 | 只看該作者
20#
發(fā)表于 2025-3-24 23:46:23 | 只看該作者
Svetlana Yarosh,Gregory D. Abowdferential equations of the It? type which contain additive as well as multiplicative stochastic unbounded white noise perturbations. The existence of a strong solution to the corresponding stochastic differential inclusion is discussed. To do this approach workable the gain control parameter is sugg
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 11:57
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
唐山市| 绵阳市| 光泽县| 铁岭市| 巴中市| 威海市| 大邑县| 巢湖市| 台东县| 凤城市| 东辽县| 山阳县| 姜堰市| 湄潭县| 江门市| 濮阳市| 临湘市| 德保县| 承德县| 石泉县| 清丰县| 灵武市| 松阳县| 察隅县| 哈尔滨市| 桃园县| 通州市| 涪陵区| 山阳县| 三河市| 黄梅县| 宝兴县| 扎兰屯市| 合川市| 天全县| 杂多县| 大宁县| 南安市| 安吉县| 隆昌县| 乡城县|