找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Topology and Their Interdisciplinary Applications; Santanu Acharjee Book 2023 The Editor(s) (if applicable) and The Author(s),

[復(fù)制鏈接]
樓主: Definite
31#
發(fā)表于 2025-3-27 00:05:11 | 只看該作者
,Filter Versus Ideal on?Topological Spaces,op a secret information-sharing scheme in?topological cryptography. This new secret-sharing scheme is developed for secret information sharing between two military groups to conduct joint operations on a certain day.
32#
發(fā)表于 2025-3-27 01:54:10 | 只看該作者
33#
發(fā)表于 2025-3-27 06:10:42 | 只看該作者
,Topological Approaches for?Vector Variational Inequality Problems,ty and lower semi-continuity, respectively. Admissibility of function space topology and convergence of net of sets are used as major tools towards achieving this goal. Topological properties of the solution sets of VVI and GVVI problems are also discussed.
34#
發(fā)表于 2025-3-27 11:44:58 | 只看該作者
35#
發(fā)表于 2025-3-27 13:46:41 | 只看該作者
,Topological Aspects of?Granular Computing,h crisp sets, to work in granular computing and thus, we restrict ourselves only to crisp set-based granular computing. At last, we discuss some feasible ideas from biology and microscopy, which may inspire the experts of granular computing to develop new theories based on crisp sets and realities of nature.
36#
發(fā)表于 2025-3-27 20:37:04 | 只看該作者
37#
發(fā)表于 2025-3-27 22:52:19 | 只看該作者
38#
發(fā)表于 2025-3-28 05:17:52 | 只看該作者
,On Quasi-uniformities, Function Spaces and?Atoms: Remarks and?Some Questions,with respect to the well-known exponential laws. These quasi-uniformities will not necessarily be atoms, thus we state the following problem: how can one define a correspondence between the atoms of the lattice of quasi-uniformities, and those atoms that are in the lattice of all quasi-uniformities on ., in the function space .?
39#
發(fā)表于 2025-3-28 08:30:10 | 只看該作者
40#
發(fā)表于 2025-3-28 14:02:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 11:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
菏泽市| 大名县| 临澧县| 武陟县| 长丰县| 桂东县| 富阳市| 永修县| 盐边县| 海口市| 镇原县| 凤翔县| 新丰县| 五寨县| 嵊泗县| 和平县| 梓潼县| 屏东市| 凉城县| 稻城县| 芦山县| 伊吾县| 甘谷县| 彭阳县| 镇坪县| 五家渠市| 武强县| 响水县| 明水县| 高密市| 通山县| 泾源县| 苍南县| 大荔县| 稻城县| 上犹县| 临汾市| 承德市| 察雅县| 壶关县| 绥江县|