找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Topology and Their Interdisciplinary Applications; Santanu Acharjee Book 2023 The Editor(s) (if applicable) and The Author(s),

[復制鏈接]
樓主: Definite
11#
發(fā)表于 2025-3-23 11:20:59 | 只看該作者
12#
發(fā)表于 2025-3-23 14:35:36 | 只看該作者
13#
發(fā)表于 2025-3-23 22:05:19 | 只看該作者
-Rung Orthopair Fuzzy Points and Applications to ,-Rung Orthopair Fuzzy Topological Spaces and Pattfuzzy sets by using the concept of Choquet integral which is a non-linear continuous aggregation operator. Then, we give some applications on pattern recognition by using .-rung orthopair fuzzy points and the Dice similarity measure. Moreover, we introduce the concept of continuity of a function def
14#
發(fā)表于 2025-3-24 01:17:23 | 只看該作者
The Anxieties of Classical Political Economyty and lower semi-continuity, respectively. Admissibility of function space topology and convergence of net of sets are used as major tools towards achieving this goal. Topological properties of the solution sets of VVI and GVVI problems are also discussed.
15#
發(fā)表于 2025-3-24 03:04:55 | 只看該作者
16#
發(fā)表于 2025-3-24 09:26:24 | 只看該作者
Liliane Haegeman,Manuela Sch?nenbergerh crisp sets, to work in granular computing and thus, we restrict ourselves only to crisp set-based granular computing. At last, we discuss some feasible ideas from biology and microscopy, which may inspire the experts of granular computing to develop new theories based on crisp sets and realities of nature.
17#
發(fā)表于 2025-3-24 10:51:57 | 只看該作者
https://doi.org/10.1007/978-3-642-19068-1ined between two .-rung orthopair fuzzy topological spaces at a .-rung orthopair fuzzy point and define the concept of convergence of nets of .-rung orthopair fuzzy points in a .-rung orthopair fuzzy topological space. Finally, we study the relationship between continuity of functions and convergence of nets.
18#
發(fā)表于 2025-3-24 15:19:40 | 只看該作者
19#
發(fā)表于 2025-3-24 21:55:05 | 只看該作者
20#
發(fā)表于 2025-3-25 01:56:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
贵溪市| 平远县| 镇江市| 萨嘎县| 白水县| 呼图壁县| 资阳市| 河北省| 额敏县| 涪陵区| 九龙坡区| 滨州市| 伊川县| 同仁县| 吉木萨尔县| 澄江县| 黔东| 高碑店市| 莆田市| 罗源县| 洮南市| 财经| 绍兴县| 阳高县| 城步| 洛浦县| 雅江县| 霍邱县| 柏乡县| 高安市| 馆陶县| 上饶市| 色达县| 莲花县| 梁平县| 古田县| 堆龙德庆县| 道孚县| 澎湖县| 汝城县| 璧山县|