找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Swarm Intelligence; First International Ying Tan,Yuhui Shi,Kay Chen Tan Conference proceedings 2010 Springer-Verlag Berlin Hei

[復制鏈接]
41#
發(fā)表于 2025-3-28 15:26:25 | 只看該作者
Radial Basis Function Neural Network Based on PSO with Mutation Operation to Solve Function Approximthm. This algorithm combines Particle Swarm Optimization algorithm (PSO) with mutation operation to train RBFNN. PSO with mutation operation and genetic algorithm are respectively used to train weights and spreads of oRBFNN, which is traditional RBFNN with gradient learning in this article. Sum Squa
42#
發(fā)表于 2025-3-28 22:13:59 | 只看該作者
43#
發(fā)表于 2025-3-28 23:45:02 | 只看該作者
44#
發(fā)表于 2025-3-29 06:40:43 | 只看該作者
45#
發(fā)表于 2025-3-29 08:32:02 | 只看該作者
46#
發(fā)表于 2025-3-29 15:09:59 | 只看該作者
A System Identification Using DRNN Based on Swarm Intelligenceation during the past decade. In this paper, a learning algorithm for Original Elman neural networks (ENN) based on modified particle swarm optimization (MPSO), which is a swarm intelligent algorithm (SIA), is presented. MPSO and Elman are hybridized to form MPSO-ENN hybrid algorithm as a system ide
47#
發(fā)表于 2025-3-29 15:56:00 | 只看該作者
Force Identification by Using SVM and CPSO Techniqued utilizes a new SVM-CPSO model that hybridized the chaos particle swarm optimization (CPSO) technique and support vector machines (SVM) to tackle the problem of force identification. Both numerical simulations and experimental study are performed to demonstrate the effectiveness, robustness and app
48#
發(fā)表于 2025-3-29 22:41:19 | 只看該作者
49#
發(fā)表于 2025-3-30 02:47:19 | 只看該作者
0302-9743 onstitute the proceedings of the International Conference on Swarm Intelligence (ICSI 2010) held in Beijing, the capital of China, during June 12-15, 2010. ICSI 2010 was the ?rst gathering in the world for researchers working on all aspects of swarm intelligence, and providedan academic forum for th
50#
發(fā)表于 2025-3-30 05:30:57 | 只看該作者
David Beech (Chairman of IFIP WG 2.7)lect parameters of SVR. The proposed approach is used for forecasting logistics demand of Shanghai, The experimental results show that the above method obtained lesser training relative error and testing relative error.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-5 22:29
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
富蕴县| 新宾| 梁平县| 台东市| 侯马市| 延安市| 偏关县| 慈溪市| 瓮安县| 逊克县| 大兴区| 加查县| 青川县| 钟祥市| 台南县| 宣武区| 会同县| 缙云县| 芒康县| 北碚区| 龙海市| 通渭县| 剑河县| 体育| 桂东县| 福清市| 延长县| 乌拉特后旗| 张家川| 潼南县| 永春县| 寿宁县| 柯坪县| 光山县| 巴林左旗| 襄垣县| 夹江县| 绥江县| 湖州市| 铜鼓县| 崇明县|