找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Swarm Intelligence; First International Ying Tan,Yuhui Shi,Kay Chen Tan Conference proceedings 2010 The Editor(s) (if applicab

[復(fù)制鏈接]
樓主: 小故障
51#
發(fā)表于 2025-3-30 12:11:59 | 只看該作者
52#
發(fā)表于 2025-3-30 13:09:07 | 只看該作者
Gender-Hierarchy Particle Swarm Optimizer Based on Punishmenttimal solution. Especially, a novel recognition approach, called general recognition, is presented to furthermore improve the performance of PSO. Experimental results show that the proposed algorithm shows better behaviors as compared to the standard PSO, tribes-based PSO and GH-PSO with tribes.
53#
發(fā)表于 2025-3-30 16:50:52 | 只看該作者
Tidal Marshes as Outwelling/Pulsing Systemsing boundedness one confirms a dominant oscillating behavior of both populations dynamics performance. However, the oscillating frequency results to be unknown. This inconvenience is overcome by considering a specific recurrence equation, in the max-plus algebra.
54#
發(fā)表于 2025-3-30 23:00:48 | 只看該作者
55#
發(fā)表于 2025-3-31 02:47:37 | 只看該作者
56#
發(fā)表于 2025-3-31 08:59:09 | 只看該作者
57#
發(fā)表于 2025-3-31 12:56:45 | 只看該作者
Biomechanics Modeling and Concepts, may be influenced due to load imbalance. In this paper we proposed approach try to further optimize this scheduling strategy by using quantum-behaved particle swarm optimization. And compared with SSAC and MINMIN in the simulation experiment; results indicate that our proposed technique is a better solution for reducing the makespan considerably.
58#
發(fā)表于 2025-3-31 14:48:55 | 只看該作者
Simulating Human Social Behaviorsjobs in each group and the sequence of groups. Three different lower bounds are developed to evaluate the performance of the proposed PSO algorithm. Limited numerical results show that the proposed PSO algorithm performs well for all test problems.
59#
發(fā)表于 2025-3-31 18:57:40 | 只看該作者
60#
發(fā)表于 2025-3-31 23:22:11 | 只看該作者
Paolo Cattorini,Roberto Mordaccing is realized through a statistical mapping, between the parameter set and the KNOB, learned by a radial basis function neural network (RBFNN) simulation model. In this way, KNOB provides an easy way to tune PSO directly by its parameter setting. A simple application of KNOB to promote is presented to verify the mechanism of KNOB.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 16:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
资中县| 阿尔山市| 彩票| 广丰县| 长岭县| 司法| 黄梅县| 三亚市| 黑水县| 葵青区| 泸州市| 尚义县| 彩票| 梅州市| 岑溪市| 筠连县| 遵义市| 班玛县| 乌恰县| 光山县| 昌吉市| 始兴县| 浑源县| 嘉峪关市| 富宁县| 内黄县| 望城县| 鸡东县| 鄂温| 汉阴县| 垦利县| 富宁县| 连江县| 东乡族自治县| 乳山市| 吴忠市| 阿合奇县| 宁河县| 乳山市| 攀枝花市| 黎川县|