找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Advances in Stochastic Simulation Methods; N. Balakrishnan,V. B. Melas,S. Ermakov Book 2000 Springer Science+Business Media New York 2000

[復(fù)制鏈接]
樓主: polysomnography
51#
發(fā)表于 2025-3-30 12:01:45 | 只看該作者
Higher Order Moments of Order Statistics from the Pareto Distribution and Edgeworth Approximate Infeed to develop approximate confidence intervals for the Pareto parameters using the Edgeworth approximation. Finally, we extend the recurrence relations to the case of the doubly truncated Pareto distribution.
52#
發(fā)表于 2025-3-30 16:01:35 | 只看該作者
In this paper, we first derive exact explicit derive approximate confidence intervals for the parameters of the power function distribution using the Edgeworth approximation. Finally, we extend the recurrence relations to the case of the doubly truncated power function distribution.
53#
發(fā)表于 2025-3-30 18:33:18 | 只看該作者
Estimation Errors for Functionals on Measure Spacesnt of a stratification technique both bias and variance of this part of error may be reduced to .(1/.) instead of the usual . (..). Several simple examples of stratification for linear functionals (i.e., integrals) are presented.
54#
發(fā)表于 2025-3-30 21:43:10 | 只看該作者
55#
發(fā)表于 2025-3-31 01:02:49 | 只看該作者
56#
發(fā)表于 2025-3-31 05:50:19 | 只看該作者
57#
發(fā)表于 2025-3-31 10:07:55 | 只看該作者
https://doi.org/10.1007/978-1-4471-1837-4ed to develop approximate confidence intervals for the Pareto parameters using the Edgeworth approximation. Finally, we extend the recurrence relations to the case of the doubly truncated Pareto distribution.
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 21:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
滦南县| 遵义县| 龙胜| 灵武市| 泰来县| 上高县| 万州区| 革吉县| 汨罗市| 天等县| 抚松县| 屏南县| 芜湖县| 扶风县| 塔城市| 本溪市| 文成县| 云梦县| 桂林市| 谢通门县| 兴城市| 得荣县| 青神县| 仪征市| 武隆县| 四会市| 固镇县| 景东| 万州区| 梓潼县| 无锡市| 双流县| 台湾省| 崇礼县| 德惠市| 来凤县| 昭苏县| 汉阴县| 衡山县| 革吉县| 桂平市|