找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Signal Processing and Intelligent Recognition Systems; 6th International Sy Sabu M. Thampi,Sri Krishnan,Jagadeesh Kannan R. Con

[復制鏈接]
樓主: 年邁
11#
發(fā)表于 2025-3-23 12:59:48 | 只看該作者
12#
發(fā)表于 2025-3-23 14:18:08 | 只看該作者
https://doi.org/10.1007/978-3-031-37706-8ion without manual labor. This has been achieved by feeding the features initially to the unsupervised learning algorithm, i.e., KMeans Clustering algorithm. The classified and misclassified vowels, then became the train and test sets respectively for supervised learning algorithms and a combined re
13#
發(fā)表于 2025-3-23 18:51:09 | 只看該作者
14#
發(fā)表于 2025-3-24 02:12:27 | 只看該作者
Fast Termination and?Workflow Netsand was less effortful for training compared to a Speaker Dependent (SD) recognizer. Testing of the system was conducted with the UA-Speech Database and the combined algorithm produced improvements in recognition accuracy from 43% to 90% for medium to highly impaired speakers revealing its applicabi
15#
發(fā)表于 2025-3-24 06:16:00 | 只看該作者
Monitoring Atomicity in Concurrent Programsodel generates sensible, diverse and personalized recommendations and is effective even on small datasets. We compare our results quantitatively against that of the popular latent factor models for music recommendation and show that our song to vector model outperforms traditional recommendation met
16#
發(fā)表于 2025-3-24 06:58:17 | 只看該作者
Minh-Thai Trinh,Duc-Hiep Chu,Joxan Jaffarpled with image post-processing has demonstrated robustness in classifying chest X-rays of external datasets, which could be used as a standalone tool for other image analysis projects..The results of the hyper-parameter tuned classification model show a dramatic improvement in overall accuracy of t
17#
發(fā)表于 2025-3-24 14:19:27 | 只看該作者
Chih-Hong Cheng,Yassine Hamza,Harald Ruessn methods improve the resolution of images alike without taking the capture range into account and hence are not quality driven. In order to improve the recognition rate irrespective of the acquisition distance, we propose to make use of transfer learning. The novelty of our approach is that it is t
18#
發(fā)表于 2025-3-24 16:33:34 | 只看該作者
19#
發(fā)表于 2025-3-24 22:02:28 | 只看該作者
20#
發(fā)表于 2025-3-24 23:22:13 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 01:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
江孜县| 金堂县| 灯塔市| 翁源县| 旺苍县| 韶关市| 香港 | 百色市| 佛坪县| 凉城县| 临澧县| 长汀县| 巴彦县| 和顺县| 两当县| 郧西县| 湾仔区| 阿图什市| 上思县| 邢台市| 石渠县| 陕西省| 苍梧县| 会东县| 邓州市| 那坡县| 莒南县| 双柏县| 东光县| 灵丘县| 和硕县| 乌鲁木齐市| 临清市| 南川市| 诸城市| 遂平县| 竹溪县| 自贡市| 运城市| 民县| 磐石市|