找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Signal Processing and Intelligent Recognition Systems; 6th International Sy Sabu M. Thampi,Sri Krishnan,Jagadeesh Kannan R. Con

[復(fù)制鏈接]
樓主: 年邁
11#
發(fā)表于 2025-3-23 12:59:48 | 只看該作者
12#
發(fā)表于 2025-3-23 14:18:08 | 只看該作者
https://doi.org/10.1007/978-3-031-37706-8ion without manual labor. This has been achieved by feeding the features initially to the unsupervised learning algorithm, i.e., KMeans Clustering algorithm. The classified and misclassified vowels, then became the train and test sets respectively for supervised learning algorithms and a combined re
13#
發(fā)表于 2025-3-23 18:51:09 | 只看該作者
14#
發(fā)表于 2025-3-24 02:12:27 | 只看該作者
Fast Termination and?Workflow Netsand was less effortful for training compared to a Speaker Dependent (SD) recognizer. Testing of the system was conducted with the UA-Speech Database and the combined algorithm produced improvements in recognition accuracy from 43% to 90% for medium to highly impaired speakers revealing its applicabi
15#
發(fā)表于 2025-3-24 06:16:00 | 只看該作者
Monitoring Atomicity in Concurrent Programsodel generates sensible, diverse and personalized recommendations and is effective even on small datasets. We compare our results quantitatively against that of the popular latent factor models for music recommendation and show that our song to vector model outperforms traditional recommendation met
16#
發(fā)表于 2025-3-24 06:58:17 | 只看該作者
Minh-Thai Trinh,Duc-Hiep Chu,Joxan Jaffarpled with image post-processing has demonstrated robustness in classifying chest X-rays of external datasets, which could be used as a standalone tool for other image analysis projects..The results of the hyper-parameter tuned classification model show a dramatic improvement in overall accuracy of t
17#
發(fā)表于 2025-3-24 14:19:27 | 只看該作者
Chih-Hong Cheng,Yassine Hamza,Harald Ruessn methods improve the resolution of images alike without taking the capture range into account and hence are not quality driven. In order to improve the recognition rate irrespective of the acquisition distance, we propose to make use of transfer learning. The novelty of our approach is that it is t
18#
發(fā)表于 2025-3-24 16:33:34 | 只看該作者
19#
發(fā)表于 2025-3-24 22:02:28 | 只看該作者
20#
發(fā)表于 2025-3-24 23:22:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 12:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄龙县| 北川| 甘孜| 德阳市| 宜川县| 德化县| 衡南县| 绥阳县| 怀远县| 寿阳县| 英山县| 金山区| 陇西县| 新乡市| 桦甸市| 台南市| 安阳县| 同仁县| 广安市| 融水| 茶陵县| 天台县| 徐州市| 乐都县| 吉安县| 湟源县| 淅川县| 文昌市| 靖远县| 靖安县| 乐业县| 札达县| 疏勒县| 普安县| 奇台县| 白朗县| 忻城县| 长沙市| 三台县| 东兰县| 江北区|