找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Self-Organizing Maps; 7th International Wo José C. Príncipe,Risto Miikkulainen Conference proceedings 2009 Springer-Verlag Berl

[復(fù)制鏈接]
樓主: Hallucination
31#
發(fā)表于 2025-3-27 00:04:55 | 只看該作者
https://doi.org/10.1007/978-3-319-02964-1ependent set of test vectors. An explanation seems to ensue from statistics. Each model vector in the VQ is determined as the average of those training vectors that are mapped into the same Voronoi domain as the model vector. On the contrary, each model vector of the SOM is determined as a weighted
32#
發(fā)表于 2025-3-27 01:23:13 | 只看該作者
33#
發(fā)表于 2025-3-27 06:34:33 | 只看該作者
34#
發(fā)表于 2025-3-27 10:22:51 | 只看該作者
Fault Prediction in Aircraft Engines Using Self-Organizing Maps,ve data measured on aircraft engines. The data are multi-dimensional measurements on the engines, which are projected on a self-organizing map in order to allow us to follow the trajectories of these data over time. The trajectories consist in a succession of points on the map, each of them correspo
35#
發(fā)表于 2025-3-27 15:31:30 | 只看該作者
Bag-of-Features Codebook Generation by Self-Organisation,e self-organisation principle is an alternative research direction to the mainstream research in visual object categorisation and its importance for the ultimate challenge, unsupervised visual object categorisation, needs to be investigated.
36#
發(fā)表于 2025-3-27 19:15:04 | 只看該作者
On the Quantization Error in SOM vs. VQ: A Critical and Systematic Study,ependent set of test vectors. An explanation seems to ensue from statistics. Each model vector in the VQ is determined as the average of those training vectors that are mapped into the same Voronoi domain as the model vector. On the contrary, each model vector of the SOM is determined as a weighted
37#
發(fā)表于 2025-3-27 22:57:23 | 只看該作者
38#
發(fā)表于 2025-3-28 02:25:38 | 只看該作者
Incremental Unsupervised Time Series Analysis Using Merge Growing Neural Gas, recursive temporal context of Merge Neural Gas (MNG) with the incremental Growing Neural Gas (GNG) and enables thereby the analysis of unbounded and possibly infinite time series in an online manner. There is no need to define the number of neurons a priori and only constant parameters are used. In
39#
發(fā)表于 2025-3-28 08:13:57 | 只看該作者
40#
發(fā)表于 2025-3-28 12:09:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 16:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南丰县| 崇礼县| 安西县| 家居| 句容市| 新邵县| 肇源县| 湘西| 碌曲县| 苏尼特右旗| 定日县| 荣成市| 明光市| 玉山县| 南安市| 张家口市| 金湖县| 拉孜县| 上虞市| 睢宁县| 普兰县| 郁南县| 瓦房店市| 和平区| 三明市| 乃东县| 阿拉善右旗| 沭阳县| 锡林浩特市| 萨迦县| 密山市| 荣成市| 贵溪市| 文昌市| 广昌县| 瓦房店市| 民乐县| 岐山县| 海丰县| 纳雍县| 额尔古纳市|