找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Self-Organizing Maps; 7th International Wo José C. Príncipe,Risto Miikkulainen Conference proceedings 2009 Springer-Verlag Berl

[復(fù)制鏈接]
樓主: Hallucination
31#
發(fā)表于 2025-3-27 00:04:55 | 只看該作者
https://doi.org/10.1007/978-3-319-02964-1ependent set of test vectors. An explanation seems to ensue from statistics. Each model vector in the VQ is determined as the average of those training vectors that are mapped into the same Voronoi domain as the model vector. On the contrary, each model vector of the SOM is determined as a weighted
32#
發(fā)表于 2025-3-27 01:23:13 | 只看該作者
33#
發(fā)表于 2025-3-27 06:34:33 | 只看該作者
34#
發(fā)表于 2025-3-27 10:22:51 | 只看該作者
Fault Prediction in Aircraft Engines Using Self-Organizing Maps,ve data measured on aircraft engines. The data are multi-dimensional measurements on the engines, which are projected on a self-organizing map in order to allow us to follow the trajectories of these data over time. The trajectories consist in a succession of points on the map, each of them correspo
35#
發(fā)表于 2025-3-27 15:31:30 | 只看該作者
Bag-of-Features Codebook Generation by Self-Organisation,e self-organisation principle is an alternative research direction to the mainstream research in visual object categorisation and its importance for the ultimate challenge, unsupervised visual object categorisation, needs to be investigated.
36#
發(fā)表于 2025-3-27 19:15:04 | 只看該作者
On the Quantization Error in SOM vs. VQ: A Critical and Systematic Study,ependent set of test vectors. An explanation seems to ensue from statistics. Each model vector in the VQ is determined as the average of those training vectors that are mapped into the same Voronoi domain as the model vector. On the contrary, each model vector of the SOM is determined as a weighted
37#
發(fā)表于 2025-3-27 22:57:23 | 只看該作者
38#
發(fā)表于 2025-3-28 02:25:38 | 只看該作者
Incremental Unsupervised Time Series Analysis Using Merge Growing Neural Gas, recursive temporal context of Merge Neural Gas (MNG) with the incremental Growing Neural Gas (GNG) and enables thereby the analysis of unbounded and possibly infinite time series in an online manner. There is no need to define the number of neurons a priori and only constant parameters are used. In
39#
發(fā)表于 2025-3-28 08:13:57 | 只看該作者
40#
發(fā)表于 2025-3-28 12:09:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 23:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
夏河县| 湘阴县| 阳城县| 平乡县| 千阳县| 大余县| 宁南县| 乌海市| 扎鲁特旗| 姜堰市| 奉贤区| 游戏| 屏边| 罗田县| 汉川市| 延庆县| 夏河县| 工布江达县| 丹棱县| 汤阴县| 闸北区| 从江县| 东丽区| 池州市| 辽源市| 常山县| 南宫市| 陵水| 九江县| 建阳市| 中方县| 锡林浩特市| 香河县| 剑川县| 句容市| 阿拉善右旗| 许昌县| 容城县| 绥芬河市| 曲松县| 通渭县|