找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Self-Organizing Maps; 8th International Wo Jorma Laaksonen,Timo Honkela Conference proceedings 2011 Springer-Verlag GmbH Berlin

[復(fù)制鏈接]
樓主: CULT
51#
發(fā)表于 2025-3-30 10:33:14 | 只看該作者
52#
發(fā)表于 2025-3-30 14:15:08 | 只看該作者
53#
發(fā)表于 2025-3-30 18:58:08 | 只看該作者
Pekka J. Korhonen,Aapo Siljam?kirameters of a local affine transformation associated with each neuron are updated by an evolutionary algorithm and used to map each template’s keypoint in the previous frame to the current one. Computer simulations indicate that the proposed approach presents better results than those obtained by a direct method approach.
54#
發(fā)表于 2025-3-30 22:11:32 | 只看該作者
Mahmoud Seyedsadr,Paul L. Corneliusihood function to the pairwise-based measures. Our method can extend any clustering measure based on set or pairwise of data points. The present paper examined the topographic component of the extended measure and revealed an appropriate neighborhood radius of the topographic measures.
55#
發(fā)表于 2025-3-31 03:40:45 | 只看該作者
56#
發(fā)表于 2025-3-31 08:32:09 | 只看該作者
Fiona K. Hamey,Berthold G?ttgensl that users have the possibility of interactively investigating the data set. This work provides an overview of state-of-the-art software tools for SOM-based visual data exploration. We discuss the functionality of software for specialized data sets, as well as for arbitrary data sets with a focus on interactive data exploration.
57#
發(fā)表于 2025-3-31 09:58:40 | 只看該作者
Sparse Functional Relevance Learning in Generalized Learning Vector Quantization set of basis functions depending on only a few parameters compared to standard relevance learning. Moreover, the sparsity of the superposition is achieved by an entropy based penalty function forcing sparsity.
58#
發(fā)表于 2025-3-31 13:54:14 | 只看該作者
Relevance Learning in Unsupervised Vector Quantization Based on Divergencesen vector quantization cost function. We consider several widely used models including the neural gas algorithm, the Heskes variant of self-organizing maps and the fuzzy c-means. We apply the relevance learning scheme for divergence based similarity measures between prototypes and data vectors in the vector quantization schemes.
59#
發(fā)表于 2025-3-31 20:19:27 | 只看該作者
https://doi.org/10.1007/978-3-642-21566-7ANN; SOM algorithms; bioinspired computing; computational intelligence; natural computing; neural network
60#
發(fā)表于 2025-3-31 22:22:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 02:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永登县| 荥经县| 绩溪县| 正阳县| 堆龙德庆县| 灵石县| 阿鲁科尔沁旗| 葫芦岛市| 甘谷县| 兴和县| 昌宁县| 无棣县| 宜春市| 满城县| 东明县| 阜康市| 金湖县| 定边县| 汪清县| 错那县| 炎陵县| 锡林浩特市| 塘沽区| 福贡县| 桐乡市| 广安市| 绥棱县| 阿拉善盟| 罗平县| 通化县| 黄骅市| 夹江县| 凌源市| 衡东县| 镇康县| 德江县| 安图县| 昔阳县| 神木县| 栾川县| 南部县|