找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Ring Theory and Applications; WARA22, Messina, Ita Shakir Ali,Mohammad Ashraf,Nadeem ur Rehman Conference proceedings 2024 The

[復制鏈接]
11#
發(fā)表于 2025-3-23 10:05:11 | 只看該作者
Some Results on Left-sided Ideals of Semiprime Rings with Symmetric , ,-Derivations, shall prove that the map . is zero if it satisfies the identity . and . for all ., where . is a left ideal of . and . be the trace of .. This result is also the generalization of Fo?ner result [., Theorem 1].
12#
發(fā)表于 2025-3-23 15:43:34 | 只看該作者
The Noncommutative Singer-Wermer Conjecture and Generalized Skew Derivations,s conjecture is still an open question for more than thirty years. In this paper, the question of when a generalized skew derivation on a Banach algebra has quasinilpotent values is considered and how this question is related to the noncommutative Singer-Wermer conjecture is discussed.
13#
發(fā)表于 2025-3-23 21:42:24 | 只看該作者
On a Functional Identity Involving Power Values of Generalized Skew Derivations on Lie Ideals,-central Lie ideal of ., . positive fixed integers. If .for all ., then there exists . such that ., for any ., with ., unless when . and ., the ring of . matrices over a field .. We will also provide a generalization of the previous result for semiprime rings.
14#
發(fā)表于 2025-3-24 01:44:34 | 只看該作者
15#
發(fā)表于 2025-3-24 05:53:14 | 只看該作者
978-3-031-50797-7The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
16#
發(fā)表于 2025-3-24 08:31:02 | 只看該作者
Computational Methods with MATLAB?esentations of a symmetric group can be approached from three different directions: by using results from the general theory of group representations, by employing combinatorial techniques, or via symmetric functions. In this paper, we study the irreducible representations of symmetric groups by usi
17#
發(fā)表于 2025-3-24 13:04:48 | 只看該作者
18#
發(fā)表于 2025-3-24 14:58:54 | 只看該作者
19#
發(fā)表于 2025-3-24 21:41:25 | 只看該作者
20#
發(fā)表于 2025-3-25 02:40:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 06:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
明溪县| 虞城县| 阿图什市| 大厂| 临汾市| 德惠市| 北安市| 绥化市| 闵行区| 商丘市| 南皮县| 罗城| 彝良县| 杂多县| 双峰县| 普陀区| 宣汉县| 建瓯市| 广宁县| 屏东县| 郁南县| 兴化市| 藁城市| 宁阳县| 新绛县| 郓城县| 登封市| 德令哈市| 中牟县| 汶川县| 徐水县| 竹溪县| 满城县| 兰西县| 长垣县| 旬邑县| 广宗县| 湖南省| 琼中| 托克逊县| 盘锦市|