找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Phase Space Analysis of Partial Differential Equations; In Honor of Ferrucci Antonio Bove,Daniele Del Santo,M.K. Venkatesha Mur

[復(fù)制鏈接]
樓主: 相持不下
21#
發(fā)表于 2025-3-25 05:14:27 | 只看該作者
Complexification in the Energiewendecs of its hamiltonian flow which imply: 1. The operator .. is essentially self-adjoint and the propagators .. are bounded between (conveniently related) generalized Sobolev spaces. 2. The propagators .. are generalized Fourier integral operators.
22#
發(fā)表于 2025-3-25 09:31:41 | 只看該作者
Forward Look at Research Perspectives,ectly the classical decay estimates with sharp bounds. Although the computations are elementary and the definition of the Oseen kernels goes back to the 1911 paper of this author, we were not able to find the simple explicit expression below in the literature.
23#
發(fā)表于 2025-3-25 12:22:41 | 只看該作者
24#
發(fā)表于 2025-3-25 18:05:47 | 只看該作者
25#
發(fā)表于 2025-3-25 22:29:40 | 只看該作者
Advances in Phase Space Analysis of Partial Differential Equations978-0-8176-4861-9Series ISSN 1421-1750 Series E-ISSN 2374-0280
26#
發(fā)表于 2025-3-26 00:28:49 | 只看該作者
Dania A. El-Kebbe,Christoph Dannemost every . with respect to the perimeter measure of ., some tangent of . at . is a vertical halfspace. This is a partial extension of a theorem of Franchi-Serapioni-Serra Cassano in step 2 Carnot groups.
27#
發(fā)表于 2025-3-26 07:26:29 | 只看該作者
Sophie Baudic,Gérard H. E. Duchampive index on H. in terms of the heat kernel. That characterization can be extended to positive indexes using Bernstein inequalities. As a corollary we obtain a proof of refined Sobolev inequalities in . spaces.
28#
發(fā)表于 2025-3-26 12:24:55 | 只看該作者
Franco Ruzzenenti,Brian D. Fathperbolic symmetrizer, its relationships with the concept of Bezout matrix, its perturbations which originate the so–called quasi-symmetrizer and its applications to Cauchy problems for linear weakly hyperbolic equations.
29#
發(fā)表于 2025-3-26 13:12:32 | 只看該作者
30#
發(fā)表于 2025-3-26 17:13:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 19:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和田县| 山阳县| 都江堰市| 福海县| 崇文区| 阿克陶县| 呼图壁县| 尼勒克县| 麻栗坡县| 镇沅| 云阳县| 乌鲁木齐县| 吉安县| 平顺县| 峨边| 广西| 武城县| 枞阳县| 读书| 寿光市| 大石桥市| 裕民县| 绥芬河市| 白银市| 巫山县| 黔西| 兴化市| 旺苍县| 托克逊县| 青州市| 紫阳县| 福安市| 沙湾县| 阿巴嘎旗| 兴宁市| 容城县| 苍南县| 霍山县| 柳江县| 滦平县| 连江县|