找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Neural Networks - ISNN 2006; Third International Jun Wang,Zhang Yi,Hujun Yin Conference proceedings 2006 Springer-Verlag Berli

[復(fù)制鏈接]
樓主: Chylomicron
41#
發(fā)表于 2025-3-28 17:18:03 | 只看該作者
42#
發(fā)表于 2025-3-28 21:05:50 | 只看該作者
43#
發(fā)表于 2025-3-29 02:10:40 | 只看該作者
Qianbin Chen,Weixiao Meng,Liqiang Zhaocognitive processes. However, several current models incorporated learning algorithms that apparently have questionable descriptive validity or qualitative plausibleness. The present research attempts to bridge this gap by identifying five critical issues overlooked by previous modeling research and
44#
發(fā)表于 2025-3-29 04:55:08 | 只看該作者
45#
發(fā)表于 2025-3-29 07:13:56 | 只看該作者
46#
發(fā)表于 2025-3-29 13:16:40 | 只看該作者
Yingjie Wang,Wei Luo,Changxiang Shenon of functions is developed by using integral transform. Using the developed representation, an approximation order estimation for the bell-shaped neural networks is obtained. The obtained result reveals that the approximation accurately of the bell-shaped neural networks depends not only on the nu
47#
發(fā)表于 2025-3-29 17:18:35 | 只看該作者
Terence R. Cannings,Sue G. Talleynsity or upper bound estimation on how a multivariate function can be approximated by the networks, and consequently, the essential approximation ability of networks cannot be revealed. In this paper, by establishing both upper and lower bound estimations on approximation order, the essential approx
48#
發(fā)表于 2025-3-29 22:04:40 | 只看該作者
Communications in an era of networksis a linear combination of wavelets, that can be updated during the networks training process. As a result the approximate error is significantly decreased. The BP algorithm and the QR decomposition based training method for the proposed WNN is derived. The obtained results indicate that this new ty
49#
發(fā)表于 2025-3-30 00:52:02 | 只看該作者
50#
發(fā)表于 2025-3-30 04:39:42 | 只看該作者
Online university degree programmesof diffusion operator and the techniques of inequality, we investigate positive invariant set, global exponential stability, and then obtain the exponential dissipativity of the neural networks under consideration. Our results can extend and improve earlier ones. An example is given to demonstrate t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 13:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
秀山| 壤塘县| 民丰县| 沈阳市| 德州市| 建阳市| 沁阳市| 宿州市| 兴海县| 浏阳市| 新闻| 正阳县| 大名县| 班戈县| 淮北市| 玛多县| 义乌市| 岑溪市| 贡觉县| 贺兰县| 屯留县| 宜黄县| 荣昌县| 久治县| 黄龙县| 晋州市| 鄂伦春自治旗| 乐至县| 漠河县| 东至县| 嘉定区| 丰城市| 金乡县| 攀枝花市| 鄂托克旗| 钟山县| 余庆县| 神木县| 阜平县| 沽源县| 镇赉县|