找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Multimedia Information Processing – PCM 2017; 18th Pacific-Rim Con Bing Zeng,Qingming Huang,Xiaopeng Fan Conference proceedings

[復制鏈接]
樓主: Roosevelt
41#
發(fā)表于 2025-3-28 16:44:15 | 只看該作者
More Efficient, Adaptive and Stable, A?Virtual Fitting System Using Kinectrallelism method to accelerate constraint resolving and collision detection. As a result, our system can provide realistic effects for the virtual fitting while meeting the real-time and robustness requirements.
42#
發(fā)表于 2025-3-28 20:31:32 | 只看該作者
43#
發(fā)表于 2025-3-29 01:06:04 | 只看該作者
44#
發(fā)表于 2025-3-29 03:42:37 | 只看該作者
Cooperative Differential Games,ime surveillance. This paper presents an effective method based on fully convolutional network (FCN), density-based spatial clustering of applications with noise (DBSCAN) and non-maximum suppression (NMS) algorithm. Our proposed approach captures the thermal face features automatically using FCN. Th
45#
發(fā)表于 2025-3-29 08:30:49 | 只看該作者
,Non—Cooperative Differential Games,t proposal method on RGB-D images with the constraint of depth connectivity, which can improve the key techniques in grouping based object proposal effectively, including segment generation, hypothesis expansion and candidate ranking. Given an RGB-D image, we first generate segments using depth awar
46#
發(fā)表于 2025-3-29 14:08:34 | 只看該作者
Masatoshi Sakawa,Ichiro Nishizakio roughly locate the salient object, which is combined with the color and texture to construct the feature space. Based on the feature space and fast background connection, a novel graph is put forward to effectively obtain the local and global cues and ease the blurry surrounds of the saliency maps
47#
發(fā)表于 2025-3-29 18:09:56 | 只看該作者
48#
發(fā)表于 2025-3-29 22:33:56 | 只看該作者
Misa Aoki,Taiki Kagami,Takashi Sugimoto of BoVW, we address this issue by proposing an efficient feature selection method for SAR target classification. First, Graphic Histogram of oriented Gradients (HOG) based features is adopted to extract features from the training SAR images. Second, a discriminative codebook is generated using K-me
49#
發(fā)表于 2025-3-30 01:04:06 | 只看該作者
Julio C. Gambina,Gabriela Roffinelliannel deep residual network to classify fine-art painting images. In detail, we take the advantage of the ImageNet to pre-train the deep residual network. Our two channels include the RGB channel and the brush stroke information channel. The gray-level co-occurrence matrix is used to detect the brus
50#
發(fā)表于 2025-3-30 04:12:01 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-10 00:51
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
江川县| 彭山县| 平果县| 台江县| 巴里| 株洲市| 大安市| 靖安县| 北碚区| 怀化市| 永福县| 嘉兴市| 金秀| 徐闻县| 鄄城县| 沙田区| 井冈山市| 甘南县| 墨玉县| 望城县| 深州市| 台山市| 巧家县| 丰镇市| 崇左市| 嘉善县| 鄂托克前旗| 乐陵市| 天等县| 清苑县| 谷城县| 仪陇县| 日喀则市| 凌云县| 大连市| 云梦县| 桂林市| 青川县| 安陆市| 冕宁县| 临漳县|