找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Mathematical Fluid Mechanics; Lecture Notes of the Josef Málek,Jind?ich Ne?as,Mirko Rokyta Book 2000 Springer-Verlag Berlin Hei

[復(fù)制鏈接]
樓主: Cyclone
11#
發(fā)表于 2025-3-23 12:53:05 | 只看該作者
Some Current Research in Decoding Theory,-linear terms. Furthermore, a simple but efficient preconditioning technique for the resulting linear systems is introduced. For the Navier-Stokes equations a Chorin-type projection method with a stabilized pressure discretization is used. Numerical examples demonstrate the efficiency of our approach.
12#
發(fā)表于 2025-3-23 16:18:49 | 只看該作者
Wen-Ching Winnie Li,Min Lu,Chenying Wangmodel. Then we survey the current state of the mathematical theory of fluid-dynamic limits for BGK systems and for discrete velocity models of relaxation type. This is done for the case that the limit is a scalar conservation law or a system of two equations.
13#
發(fā)表于 2025-3-23 18:03:12 | 只看該作者
14#
發(fā)表于 2025-3-24 02:06:22 | 只看該作者
https://doi.org/10.1007/978-3-642-57308-8Navier-Stokes equation; Navier-Stokes equations; fluid mechanics; fluid models limit; incompressible and
15#
發(fā)表于 2025-3-24 04:31:56 | 只看該作者
16#
發(fā)表于 2025-3-24 09:33:12 | 只看該作者
17#
發(fā)表于 2025-3-24 13:08:47 | 只看該作者
18#
發(fā)表于 2025-3-24 16:37:42 | 只看該作者
Clemens Adelmann,Arne Winterhofrms have got same asymptotic behavior either at a singularity point of the boundary, or at infinity. The characteristic feature of these spaces is that their norms are composed from both, norms of angular parts in the detached terms and norms of asymptotic remainders. The developed approach is descr
19#
發(fā)表于 2025-3-24 20:24:57 | 只看該作者
Wen-Ching Winnie Li,Min Lu,Chenying Wangrst, we discuss the emergence of the compressible Euler equations for an ideal gas in the fluid-dynamic limit of the Boltzmann equation or of the BGK model. Then we survey the current state of the mathematical theory of fluid-dynamic limits for BGK systems and for discrete velocity models of relaxat
20#
發(fā)表于 2025-3-25 02:11:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 15:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邳州市| 当阳市| 灵石县| 三都| 江山市| 华阴市| 当雄县| 浙江省| 阳曲县| 太白县| 莒南县| 郎溪县| 库伦旗| 金乡县| 巨鹿县| 印江| 皋兰县| 中超| 虎林市| 依安县| 威远县| 贡嘎县| 泾阳县| 即墨市| 慈利县| 酒泉市| 康马县| 神木县| 平陆县| 海盐县| 砚山县| 高陵县| 和田市| 道真| 开化县| 迭部县| 通河县| 全椒县| 繁昌县| 白城市| 克山县|