找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Kinetic Theory and Continuum Mechanics; Proceedings of a Sym Renée Gatignol,Soubbaramayer Conference proceedings 1991 Springer-

[復(fù)制鏈接]
樓主: 廚房默契
11#
發(fā)表于 2025-3-23 11:42:38 | 只看該作者
Conference proceedings 1991of Professor Henri Cabannes on the occasion of his retirement. There were about one hundred participants from nine countries: Canada, France, Germany, Italy, Japan, Norway, Portugal, the Netherlands, and the USA. Many of his past students or his colleagues were among the participants. The twenty-six
12#
發(fā)表于 2025-3-23 15:19:29 | 只看該作者
13#
發(fā)表于 2025-3-23 18:19:14 | 只看該作者
S. Matalon,R. R. Baker,P. C. Engstromven that a large class of polynomial collision operators in semidetailed balance satisfies this .-theorem. Finally, results are given concerning the global validity in time of the convergence for the case where the formal scaling of the kinetic equation leads to the linearized incompressible Navier-Stokes limit.
14#
發(fā)表于 2025-3-24 01:01:48 | 只看該作者
Neurotrophism — Another Approachlution in terms of the initial values (this, of course, would entail global existence of a mild solution). The purpose of this article is to compare the situation with the better understood one-dimensional case, spell out some crucial differences, and point out a possible way to progress.
15#
發(fā)表于 2025-3-24 03:50:25 | 只看該作者
Albrecht Struppler,Adolf Weindl models. In order to eliminate these difficulties, multiple collisions are introduced, and some symmetry properties on the models are adopted. The Euler equations are then given for discrete models with different moduli.
16#
發(fā)表于 2025-3-24 09:05:53 | 只看該作者
17#
發(fā)表于 2025-3-24 11:17:52 | 只看該作者
18#
發(fā)表于 2025-3-24 16:19:50 | 只看該作者
19#
發(fā)表于 2025-3-24 20:34:13 | 只看該作者
20#
發(fā)表于 2025-3-25 00:57:43 | 只看該作者
Asymptotic Theory of a Steady Flow of a Rarefied Gas Past Bodies for Small Knudsen Numbers978-3-322-88592-0
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 23:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西宁市| 贵溪市| 阿合奇县| 渝中区| 新野县| 都江堰市| 新源县| 康定县| 思茅市| 大渡口区| 中江县| 合山市| 固原市| 云南省| 平定县| 舒城县| 上饶县| 遵义市| 天峻县| 苏尼特右旗| 台东县| 万载县| 永仁县| 宜都市| 西盟| 灌南县| 永泰县| 准格尔旗| 安新县| 舟山市| 兰考县| 肇庆市| 布拖县| 麻栗坡县| 南开区| 河东区| 新民市| 大埔县| 永德县| 镇雄县| 同德县|