找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in GLIM and Statistical Modelling; Proceedings of the G Ludwig Fahrmeir,Brian Francis,Gerhard Tutz Conference proceedings 1992 Spr

[復(fù)制鏈接]
樓主: Agitated
21#
發(fā)表于 2025-3-25 04:43:15 | 只看該作者
S. De Flora,C. Bennicelli,M. Bagnascoon function of the error term is not known. Regularity conditions and technical proofs are found in their paper. Their results are briefly reviewed and related to quasi ML estimation of generalized linear models (GLM’s) (McCullagh and Nelder 1989). Then residuals and influential points are discussed.
22#
發(fā)表于 2025-3-25 08:36:37 | 只看該作者
23#
發(fā)表于 2025-3-25 13:23:52 | 只看該作者
24#
發(fā)表于 2025-3-25 17:55:12 | 只看該作者
25#
發(fā)表于 2025-3-25 22:04:50 | 只看該作者
https://doi.org/10.1007/978-1-4684-8938-5oblems. This paper deals with a Gibbs sampling approach for obtaining posterior mean smoothers in the exponential family framework. Implementation and performance are investigated by Monte Carlo experiments, and a real data application is given for illustration.
26#
發(fā)表于 2025-3-26 03:06:36 | 只看該作者
27#
發(fā)表于 2025-3-26 04:38:55 | 只看該作者
Recent Results in Cancer Researcher updates that work and gives practical examples of particular models which can be fitted in GLIM4. Some models could be fitted in GLIM3.77, but with difficulty; others are new facilities available with the new release of the package.
28#
發(fā)表于 2025-3-26 10:54:48 | 只看該作者
29#
發(fā)表于 2025-3-26 16:29:20 | 只看該作者
S. De Flora,C. Bennicelli,M. Bagnascoon function of the error term is not known. Regularity conditions and technical proofs are found in their paper. Their results are briefly reviewed and related to quasi ML estimation of generalized linear models (GLM’s) (McCullagh and Nelder 1989). Then residuals and influential points are discussed
30#
發(fā)表于 2025-3-26 19:44:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 11:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汉川市| 临泉县| 汶川县| 巴彦淖尔市| 新乡县| 南靖县| 油尖旺区| 获嘉县| 个旧市| 安庆市| 二连浩特市| 东兴市| 溧阳市| 刚察县| 丰县| 连江县| 汤原县| 琼海市| 张家川| 江阴市| 东安县| 常州市| 九江县| 西林县| 蒙阴县| 中方县| 吉水县| 防城港市| 鄯善县| 西贡区| 固安县| 铜山县| 临漳县| 滦南县| 石首市| 永顺县| 灵石县| 临安市| 陇西县| 太保市| 牡丹江市|