找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Data-driven Computing and Intelligent Systems; Selected Papers from Swagatam Das,Snehanshu Saha,Jagdish Chand Bansal Conference

[復制鏈接]
樓主: 法官所用
51#
發(fā)表于 2025-3-30 09:36:33 | 只看該作者
https://doi.org/10.1007/978-94-6091-719-6llowers may see each other’s ideas and sentiments, which may spread to more users in the future. Therefore, this research proposes a concept named “sentiment community”. The purpose is to explore the feelings and interactions of users on social networking sites. We have used graphs for the modelling
52#
發(fā)表于 2025-3-30 15:39:32 | 只看該作者
Anita Hussenius,Kathryn Scantlebury. Electroencephalogram (EEG) trials from eight channels collected during an oddball experiment were used in this analysis. All the trials were divided into non-target (non-P300) and target (P300) trial cohorts. Data-driven correlated component analysis (CorrCA) was applied to both cohorts separately
53#
發(fā)表于 2025-3-30 19:46:52 | 只看該作者
Sherry A. Southerland,Sibel Uysal Bahbaht there should exist a system that can handle the queries raised by a farmer in regional language and respond to queries asked with minimal human involvement. The proposed framework accepts the farmers‘ queries spoken in Kannada language and translates the Kannada query into English query. The trans
54#
發(fā)表于 2025-3-30 21:18:57 | 只看該作者
M.-H. Chiu,P. J. Gilmer,D. F. Treagusts based on their speech features extracted from the speech utterances. After the recent developments of deep learning (DL) models, deep convolutional neural networks (DCNNs) have been widely used for solving the SI tasks. A CNN model consists of mainly two parts, deep convolutional feature extractio
55#
發(fā)表于 2025-3-31 01:05:14 | 只看該作者
https://doi.org/10.1007/978-3-030-50797-8 speech processing. It plays a vital role in various real-life applications such as Internet of things (IoT) devices and assistive technology to name a few. The deep learning models like convolutional neural networks (CNNs) have shown the potential ability to solve SCR tasks. However, these models’
56#
發(fā)表于 2025-3-31 08:03:59 | 只看該作者
https://doi.org/10.1007/978-3-030-50797-8n and prevention measures help in improving the farm productivity. Internet of Things (IoT)-based monitoring techniques are required to reduce the manual efforts and improve the precision in decision making. Sensor-based Internet of Things (SBIoT) is capable of providing a framework for remote monit
57#
發(fā)表于 2025-3-31 10:00:25 | 只看該作者
58#
發(fā)表于 2025-3-31 16:33:20 | 只看該作者
59#
發(fā)表于 2025-3-31 21:28:06 | 只看該作者
60#
發(fā)表于 2025-4-1 01:37:51 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 03:26
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
五莲县| 武城县| 明光市| 洞口县| 通渭县| 湛江市| 永嘉县| 洮南市| 宁津县| 伊通| 新竹县| 合水县| 鄯善县| 乾安县| 普定县| 丁青县| 繁昌县| 葵青区| 什邡市| 同心县| 安化县| 正宁县| 南投县| 沭阳县| 汉源县| 财经| 郓城县| 邻水| 临潭县| 吉林市| 罗山县| 师宗县| 永靖县| 共和县| 泉州市| 石棉县| 安宁市| 裕民县| 宝兴县| 仁布县| 普兰县|