找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Cryptology - CRYPTO ‘97; 17th Annual Internat Burton S. Kaliski Conference proceedings 1997 Springer-Verlag Berlin Heidelberg 1

[復制鏈接]
樓主: affront
41#
發(fā)表于 2025-3-28 17:22:17 | 只看該作者
Creating, Updating, and Releasing a QMS,mputational problem on lattices is hard on the worst-case. Their encryption method may cause decryption errors, though with small probability (i.e., inversely proportional to the security parameter). In this paper we modify the encryption method of Ajtai and Dwork so that the legitimate receiver alw
42#
發(fā)表于 2025-3-28 19:36:27 | 只看該作者
43#
發(fā)表于 2025-3-28 23:34:41 | 只看該作者
44#
發(fā)表于 2025-3-29 06:27:29 | 只看該作者
45#
發(fā)表于 2025-3-29 11:17:23 | 只看該作者
46#
發(fā)表于 2025-3-29 14:18:02 | 只看該作者
CMOS Differential Logic Families,sically all knapsack cryptosystems that have been proposed so far have been broken, mainly by means of lattice reduction techniques. However, a few knapsack-like cryptosystems have withstood cryptanalysis, among which the Chor-Rivest scheme [2] even if this is debatable (see [16]), and the Qu-Vansto
47#
發(fā)表于 2025-3-29 16:58:19 | 只看該作者
48#
發(fā)表于 2025-3-29 21:03:35 | 只看該作者
Physics and Modelling of MOSFETs,ultiplicative property of RSA signature function and extends old results of De Jonge and Chaum [DJC] as well as recent results of Girault and Misarsky [GM]. Our method uses the lattice basis reduction [LLL] and algorithms of László Babai [B]. Our attack is valid when the length of redundancy is roug
49#
發(fā)表于 2025-3-30 00:19:22 | 只看該作者
50#
發(fā)表于 2025-3-30 07:35:06 | 只看該作者
The CMOS Inverter: Analysis and Design, to extract some information on the secret key. This attacking scenario is well understood in the cryptographic community. However, there are many protocols based on the discrete logarithm problem that turn out to leak many of the secret key bits from this oracle attack, unless suitable checkings ar
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-18 17:17
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
澳门| 房山区| 喀喇| 龙口市| 永川市| 徐州市| 宁乡县| 双流县| 大埔县| 定襄县| 新宾| 宝应县| 清苑县| 深圳市| 滦南县| 洪湖市| 新营市| 苏尼特右旗| 龙南县| 措勤县| 奉新县| 石台县| 萨迦县| 锡林浩特市| 庆城县| 行唐县| 珠海市| 大足县| 治县。| 疏勒县| 高碑店市| 齐河县| 衡阳县| 贞丰县| 城固县| 西乌| 黄龙县| 青海省| 油尖旺区| 虹口区| 南充市|