找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Cryptology – ASIACRYPT 2020; 26th International C Shiho Moriai,Huaxiong Wang Conference proceedings 2020 International Associat

[復制鏈接]
樓主: HBA1C
21#
發(fā)表于 2025-3-25 06:09:51 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/a/image/147494.jpg
22#
發(fā)表于 2025-3-25 08:24:26 | 只看該作者
Albena Azmanova,James Chamberlainat of Boneh et al. (which supports aggregating only once), have constant-size public parameters, commitments and openings. As an additional feature, for the first construction we propose efficient arguments of knowledge of subvector openings which immediately yields a keyless proof of storage with c
23#
發(fā)表于 2025-3-25 12:25:36 | 只看該作者
24#
發(fā)表于 2025-3-25 18:42:44 | 只看該作者
25#
發(fā)表于 2025-3-25 22:43:53 | 只看該作者
https://doi.org/10.1007/978-3-319-64888-0rity parameter, even in the multi-challenge setting, where an adversary can ask for multiple challenge ciphertexts. We prove the adaptive security of our scheme based on the Matrix Decisional Diffie-Hellman assumption in prime-order pairing groups, which generalizes a family of standard Diffie-Hellm
26#
發(fā)表于 2025-3-26 02:29:22 | 只看該作者
27#
發(fā)表于 2025-3-26 06:09:57 | 只看該作者
The American Empire in the Pacific,to existing solutions, the constructions we propose have some interesting properties: (1) the size of the ciphertext is linear to the size of plaintext and independent of the sizes and the number of the analysis patterns; (2) the sizes of the issued trapdoors are constant on the size of the data to
28#
發(fā)表于 2025-3-26 08:49:44 | 只看該作者
The American Empire in the Pacific,gree polynomial . by identifying the . to make a composite polynomial . get close to the sign function (equivalent to the comparison function) as the number of compositions increases. We additionally introduce an acceleration method applying a mixed polynomial composition . for some other polynomial
29#
發(fā)表于 2025-3-26 15:25:48 | 只看該作者
30#
發(fā)表于 2025-3-26 18:11:29 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 20:23
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
呼和浩特市| 兰考县| 搜索| 霍林郭勒市| 手游| 卫辉市| 宜阳县| 青州市| 美姑县| 伊吾县| 丽水市| 金塔县| 德州市| 景德镇市| 阜阳市| 都安| 常山县| 日土县| 株洲市| 克什克腾旗| 小金县| 安乡县| 新乐市| 安溪县| 郸城县| 宁蒗| 承德市| 淮北市| 龙川县| 葵青区| 巨鹿县| 乌海市| 永新县| 琼海市| 浪卡子县| 滨海县| 法库县| 平南县| 多伦县| 龙岩市| 安丘市|