找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Commutative Algebra; Dedicated to David F Ayman Badawi,Jim Coykendall Book 2019 Springer Nature Singapore Pte Ltd. 2019 Commuta

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 23:46:30 | 只看該作者
Optimierung nach dem BPR-Projekt Therefore, the .-local domains (i.e., the local domains, with maximal ideal being a .-ideal) are “cousins” of valuation domains, but, as we will see in detail, not so close. Indeed, for instance, a localization of a .-local domain is not necessarily .-local, but of course a localization of a valuat
32#
發(fā)表于 2025-3-27 02:50:51 | 只看該作者
https://doi.org/10.1007/978-3-663-14687-2 (.,?.) is said to be a strongly divided pair if, for each ring . such that . and each . such that ., one has .. Let . be the integral closure of . in .. Then (.,?.) is a strongly divided pair if and only if . and . have the same sets of nonmaximal prime ideals and, for each maximal ideal . of ., .
33#
發(fā)表于 2025-3-27 05:26:43 | 只看該作者
34#
發(fā)表于 2025-3-27 10:41:55 | 只看該作者
https://doi.org/10.1007/978-3-642-01588-5 any commutative ring ., the polynomial ring . is additively regular, moreover if ., then . is regular when . is regular. We introduce several stronger types of additively regular rings where the choice for . is restricted: . is strongly additively regular if for each pair of elements . with . regul
35#
發(fā)表于 2025-3-27 15:32:27 | 只看該作者
https://doi.org/10.1007/1-4020-2198-4ere is an equation . with . for .. The set of all elements that are .-integral over . is called the .-integral closure of .. This paper surveys recent literature which studies .-reductions and .-integral closure of ideals in arbitrary domains as well as in special contexts such as Prüfer .-multiplic
36#
發(fā)表于 2025-3-27 21:26:38 | 只看該作者
37#
發(fā)表于 2025-3-27 22:38:51 | 只看該作者
38#
發(fā)表于 2025-3-28 04:16:06 | 只看該作者
39#
發(fā)表于 2025-3-28 06:30:27 | 只看該作者
https://doi.org/10.1007/1-4020-2198-4ces . and . are adjacent if and only if .. The . of . with respect to the ideal ., denoted by ., is the graph on vertices . for some ., where distinct vertices . and . are adjacent if and only if .. In this paper, we cover two main topics: isomorphisms and planarity of zero-divisor graphs. For each
40#
發(fā)表于 2025-3-28 12:26:00 | 只看該作者
https://doi.org/10.1007/978-981-13-7028-1Commutative Ring; Zero-divisor Graph; Integral Domains; Pseudographs; Classical Rings; combinatorics
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 11:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
页游| 丹巴县| 新蔡县| 花莲县| 金山区| 香格里拉县| 峨眉山市| 盘山县| 皋兰县| 枣强县| 出国| 梁山县| 基隆市| 蒲城县| 华安县| 余姚市| 太白县| 洛扎县| 清远市| 特克斯县| 黎川县| 洪雅县| 双鸭山市| 崇义县| 天祝| 诏安县| 克什克腾旗| 嘉义市| 台湾省| 宜兰县| 平乡县| 巴彦县| 临海市| 玉门市| 鄂托克前旗| 句容市| 武义县| 木兰县| 屯留县| 阿城市| 永平县|